Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from PIL import Image, ImageDraw, ImageFont | |
| from ultralytics import YOLO | |
| import spaces | |
| import cv2 | |
| import numpy as np | |
| import tempfile | |
| def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection): | |
| if input_type == "Image": | |
| if image is None: | |
| width, height = 640, 480 | |
| blank_image = Image.new("RGB", (width, height), color="white") | |
| draw = ImageDraw.Draw(blank_image) | |
| message = "No image provided" | |
| font = ImageFont.load_default(size=40) | |
| bbox = draw.textbbox((0, 0), message, font=font) | |
| text_width = bbox[2] - bbox[0] | |
| text_height = bbox[3] - bbox[1] | |
| text_x = (width - text_width) / 2 | |
| text_y = (height - text_height) / 2 | |
| draw.text((text_x, text_y), message, fill="black", font=font) | |
| return blank_image, None | |
| model = YOLO(model_id) | |
| results = model.predict( | |
| source=image, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| imgsz=640, | |
| max_det=max_detection, | |
| show_labels=True, | |
| show_conf=True, | |
| ) | |
| for r in results: | |
| image_array = r.plot() | |
| annotated_image = Image.fromarray(image_array[..., ::-1]) | |
| return annotated_image, None | |
| elif input_type == "Video": | |
| if video is None: | |
| width, height = 640, 480 | |
| blank_image = Image.new("RGB", (width, height), color="white") | |
| draw = ImageDraw.Draw(blank_image) | |
| message = "No video provided" | |
| font = ImageFont.load_default(size=40) | |
| bbox = draw.textbbox((0, 0), message, font=font) | |
| text_width = bbox[2] - bbox[0] | |
| text_height = bbox[3] - bbox[1] | |
| text_x = (width - text_width) / 2 | |
| text_y = (height - text_height) / 2 | |
| draw.text((text_x, text_y), message, fill="black", font=font) | |
| temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height)) | |
| frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR) | |
| out.write(frame) | |
| out.release() | |
| return None, temp_video_file | |
| model = YOLO(model_id) | |
| cap = cv2.VideoCapture(video) | |
| fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25 | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| results = model.predict( | |
| source=pil_frame, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| imgsz=640, | |
| max_det=max_detection, | |
| show_labels=True, | |
| show_conf=True, | |
| ) | |
| for r in results: | |
| annotated_frame_array = r.plot() | |
| annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB) | |
| frames.append(annotated_frame) | |
| cap.release() | |
| if len(frames) == 0: | |
| return None, None | |
| height_out, width_out, _ = frames[0].shape | |
| temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out)) | |
| for f in frames: | |
| f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR) | |
| out.write(f_bgr) | |
| out.release() | |
| return None, temp_video_file | |
| else: | |
| return None, None | |
| def update_visibility(input_type): | |
| """ | |
| Show/hide image/video input and output depending on input_type. | |
| """ | |
| if input_type == "Image": | |
| # image, video, output_image, output_video | |
| return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) | |
| def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection): | |
| """ | |
| This is called by gr.Examples. We force the radio to 'Image' | |
| and then do a standard image inference, returning both updated radio | |
| value and the annotated image. | |
| """ | |
| annotated_image, _ = yolo_inference( | |
| input_type="Image", | |
| image=image, | |
| video=None, | |
| model_id=model_id, | |
| conf_threshold=conf_threshold, | |
| iou_threshold=iou_threshold, | |
| max_detection=max_detection | |
| ) | |
| return gr.update(value="Image"), annotated_image | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Yolo11: Object Detection, Instance Segmentation, Pose/Keypoints, Oriented Detection, Classification") | |
| gr.Markdown("Upload image(s) or video(s) for inference using the latest Ultralytics YOLO11 models.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil", label="Image", visible=True) | |
| video = gr.Video(label="Video", visible=False) | |
| input_type = gr.Radio( | |
| choices=["Image", "Video"], | |
| value="Image", | |
| label="Input Type", | |
| ) | |
| model_id = gr.Dropdown( | |
| label="Model Name", | |
| choices=[ | |
| 'yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt', | |
| 'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt', | |
| 'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt', | |
| 'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt', | |
| 'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt' | |
| ], | |
| value="yolo11n.pt", | |
| ) | |
| conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold") | |
| iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold") | |
| max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection") | |
| infer_button = gr.Button("Detect Objects") | |
| with gr.Column(): | |
| output_image = gr.Image(type="pil", label="Annotated Image", visible=True) | |
| output_video = gr.Video(label="Annotated Video", visible=False) | |
| # Toggle input/output visibility | |
| input_type.change( | |
| fn=update_visibility, | |
| inputs=input_type, | |
| outputs=[image, video, output_image, output_video], | |
| ) | |
| # Main inference for button click | |
| infer_button.click( | |
| fn=yolo_inference, | |
| inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection], | |
| outputs=[output_image, output_video], | |
| ) | |
| if __name__ == '__main__': | |
| app.launch() |