Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -73,6 +73,7 @@ from tensorflow.keras.models import Sequential, model_from_json
|
|
| 73 |
import tensorflow as tf
|
| 74 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 75 |
import spacy
|
|
|
|
| 76 |
#from spacy import en_core_web_lg
|
| 77 |
#import en_core_web_lg
|
| 78 |
#nlp = en_core_web_lg.load()
|
|
@@ -171,6 +172,10 @@ def main():
|
|
| 171 |
|
| 172 |
# pipeline_test_output = loaded_vectorizer.transform(class_list)
|
| 173 |
# predicted = loaded_model.predict(pipeline_test_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
text_embedding = np.zeros((len(word_index) + 1, 300))
|
| 175 |
for word, i in word_index.items():
|
| 176 |
text_embedding[i] = nlp(word).vector
|
|
|
|
| 73 |
import tensorflow as tf
|
| 74 |
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 75 |
import spacy
|
| 76 |
+
from tensorflow.keras.preprocessing.text import Tokenizer
|
| 77 |
#from spacy import en_core_web_lg
|
| 78 |
#import en_core_web_lg
|
| 79 |
#nlp = en_core_web_lg.load()
|
|
|
|
| 172 |
|
| 173 |
# pipeline_test_output = loaded_vectorizer.transform(class_list)
|
| 174 |
# predicted = loaded_model.predict(pipeline_test_output)
|
| 175 |
+
|
| 176 |
+
tokenizer = Tokenizer(num_words=100000)
|
| 177 |
+
tokenizer.fit_on_texts(class_list)
|
| 178 |
+
word_index = tokenizer.word_index
|
| 179 |
text_embedding = np.zeros((len(word_index) + 1, 300))
|
| 180 |
for word, i in word_index.items():
|
| 181 |
text_embedding[i] = nlp(word).vector
|