Spaces:
Runtime error
Runtime error
File size: 7,508 Bytes
dd8114e 97d0043 2fe2b52 97d0043 2fe2b52 97d0043 2fe2b52 97d0043 2fe2b52 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 2fe2b52 0490dd2 921eb67 97d0043 b00d3d9 eb1838b 9dfd087 c14d525 dc112f3 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b e716c4d eb1838b e716c4d eb1838b e716c4d 2fe2b52 e716c4d eb1838b e716c4d eb1838b e716c4d eb1838b 8196f26 eb1838b e716c4d eb1838b e716c4d 97d0043 921eb67 97d0043 eb1838b 97d0043 04c13ac 97d0043 0490dd2 921eb67 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 eb1838b 97d0043 fb8e4a3 2fe2b52 fb8e4a3 97d0043 fb8e4a3 eb1838b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# inspiration from -> https://huggingface.co/spaces/sitammeur/Gemma-llamacpp
import os
import sys
from typing import List, Tuple
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.messages_formatter import MessagesFormatter, PromptMarkers
from huggingface_hub import hf_hub_download
import gradio as gr
# Load the Environment Variables from .env file
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Download gguf model files
if not os.path.exists("./models"):
os.makedirs("./models")
hf_hub_download(
repo_id="SRP-base-model-training/gemma_3_800M_sft_v2_translation-kazparc_latest",
filename="gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
local_dir="./models",
)
# Define the prompt markers for Gemma 3
gemma_3_prompt_markers = {
Roles.system: PromptMarkers("<start_of_turn>system\n", "<end_of_turn>\n"),
Roles.user: PromptMarkers("<start_of_turn>user\n", "<end_of_turn>\n"),
Roles.assistant: PromptMarkers("<start_of_turn>assistant", ""),
Roles.tool: PromptMarkers("", ""),
}
gemma_3_formatter = MessagesFormatter(
pre_prompt="",
prompt_markers=gemma_3_prompt_markers,
include_sys_prompt_in_first_user_message=True,
default_stop_sequences=["<end_of_turn>", "<start_of_turn>"],
strip_prompt=False,
bos_token="<bos>",
eos_token="<eos>",
)
# Translation direction to prompts mapping
direction_to_prompts = {
"English to Kazakh": {
"system": "You are a professional translator. Translate the following sentence into қазақ.",
"prefix": "<src=en><tgt=kk>"
},
"Kazakh to English": {
"system": "Сіз кәсіби аудармашысыз. Төмендегі сөйлемді English тіліне аударыңыз.",
"prefix": "<src=kk><tgt=en>"
},
"Kazakh to Russian": {
"system": "Сіз кәсіби аудармашысыз. Төмендегі сөйлемді орыс тіліне аударыңыз.",
"prefix": "<src=kk><tgt=ru>"
},
"Russian to Kazakh": {
"system": "Вы профессиональный переводчик. Переведите следующее предложение на қазақ язык.",
"prefix": "<src=ru><tgt=kk>"
}
}
llm = None
llm_model = None
def respond(
message: str,
history: List[Tuple[str, str]],
model: str = "gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
direction: str = "English to Kazakh",
max_tokens: int = 64,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repeat_penalty: float = 1.1,
):
"""
Respond to a message by translating it using the specified direction.
Args:
message (str): The text to translate.
history (List[Tuple[str, str]]): The chat history.
direction (str): The translation direction (e.g., "English to Kazakh").
model (str): The model file to use.
max_tokens (int): Maximum number of tokens to generate.
temperature (float): Sampling temperature.
top_p (float): Top-p sampling parameter.
top_k (int): Top-k sampling parameter.
repeat_penalty (float): Penalty for repetition.
Yields:
str: The translated text as it is generated.
"""
global llm, llm_model
if llm is None or llm_model != model:
model_path = f"models/{model}"
if not os.path.exists(model_path):
yield f"Error: Model file not found at {model_path}."
return
llm = Llama(
model_path=model_path,
flash_attn=False,
n_gpu_layers=0,
n_batch=8,
n_ctx=2048,
n_threads=8,
n_threads_batch=8,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
# Get system prompt and user prefix based on direction
prompts = direction_to_prompts[direction]
system_message = prompts["system"]
user_prefix = prompts["prefix"]
agent = LlamaCppAgent(
provider,
system_prompt=system_message,
custom_messages_formatter=gemma_3_formatter,
debug_output=True,
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
for user_msg, assistant_msg in history:
full_user_msg = user_prefix + " " + user_msg
messages.add_message({"role": Roles.user, "content": full_user_msg})
messages.add_message({"role": Roles.assistant, "content": assistant_msg})
full_message = user_prefix + " " + message
stream = agent.get_chat_response(
full_message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
respond,
examples=[["Hello"], ["Сәлем"], ["Привет"]],
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Dropdown(
choices=[
"gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
],
value="gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
label="Model",
info="Select the AI model to use for chat",
),
gr.Dropdown(
choices=["English to Kazakh", "Kazakh to English", "Kazakh to Russian", "Russian to Kazakh"],
label="Translation Direction",
info="Select the direction of translation"
),
gr.Slider(
minimum=512,
maximum=2048,
value=1024,
step=1,
label="Max Tokens",
info="Maximum length of the translation"
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Controls randomness (higher = more creative)"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold"
),
gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top-k",
info="Limits vocabulary to top K tokens"
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Penalizes repeated words"
),
],
theme="Ocean",
submit_btn="Translate",
stop_btn="Stop",
title="Kazakh Translation Model",
description="Translate text between Kazakh, English, and Russian using a specialized language model.",
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_api=False,
) |