File size: 7,508 Bytes
dd8114e
 
97d0043
 
 
 
 
 
 
 
 
 
2fe2b52
 
97d0043
 
2fe2b52
97d0043
 
 
2fe2b52
97d0043
 
 
 
 
2fe2b52
97d0043
 
eb1838b
97d0043
 
eb1838b
97d0043
 
 
eb1838b
97d0043
eb1838b
97d0043
eb1838b
 
 
97d0043
2fe2b52
0490dd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
921eb67
97d0043
 
 
 
b00d3d9
 
eb1838b
9dfd087
c14d525
dc112f3
97d0043
 
 
 
 
eb1838b
 
97d0043
eb1838b
 
 
 
 
 
 
 
 
 
 
 
97d0043
eb1838b
 
e716c4d
 
 
eb1838b
e716c4d
 
eb1838b
e716c4d
 
 
 
 
 
2fe2b52
e716c4d
 
 
eb1838b
 
 
 
 
e716c4d
 
eb1838b
e716c4d
 
 
 
 
 
 
 
 
 
 
 
 
eb1838b
 
 
 
8196f26
eb1838b
e716c4d
 
eb1838b
e716c4d
 
 
 
 
 
 
 
 
 
97d0043
921eb67
97d0043
 
eb1838b
 
97d0043
04c13ac
 
 
 
 
 
 
 
97d0043
0490dd2
 
 
921eb67
97d0043
 
 
 
 
 
eb1838b
97d0043
 
 
 
 
 
 
eb1838b
97d0043
 
 
 
 
 
 
eb1838b
97d0043
 
 
 
 
 
 
eb1838b
97d0043
 
 
 
 
 
 
eb1838b
97d0043
 
 
eb1838b
97d0043
eb1838b
 
97d0043
 
 
fb8e4a3
2fe2b52
fb8e4a3
 
 
97d0043
fb8e4a3
eb1838b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# inspiration from -> https://huggingface.co/spaces/sitammeur/Gemma-llamacpp

import os
import sys
from typing import List, Tuple
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
from llama_cpp_agent.messages_formatter import MessagesFormatter, PromptMarkers
from huggingface_hub import hf_hub_download
import gradio as gr

# Load the Environment Variables from .env file
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

# Download gguf model files
if not os.path.exists("./models"):
    os.makedirs("./models")

hf_hub_download(
    repo_id="SRP-base-model-training/gemma_3_800M_sft_v2_translation-kazparc_latest",
    filename="gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
    local_dir="./models",
)

# Define the prompt markers for Gemma 3
gemma_3_prompt_markers = {
    Roles.system: PromptMarkers("<start_of_turn>system\n", "<end_of_turn>\n"),
    Roles.user: PromptMarkers("<start_of_turn>user\n", "<end_of_turn>\n"),
    Roles.assistant: PromptMarkers("<start_of_turn>assistant", ""),
    Roles.tool: PromptMarkers("", ""),
}

gemma_3_formatter = MessagesFormatter(
    pre_prompt="",
    prompt_markers=gemma_3_prompt_markers,
    include_sys_prompt_in_first_user_message=True,
    default_stop_sequences=["<end_of_turn>", "<start_of_turn>"],
    strip_prompt=False,
    bos_token="<bos>",
    eos_token="<eos>",
)

# Translation direction to prompts mapping
direction_to_prompts = {
    "English to Kazakh": {
        "system": "You are a professional translator. Translate the following sentence into қазақ.",
        "prefix": "<src=en><tgt=kk>"
    },
    "Kazakh to English": {
        "system": "Сіз кәсіби аудармашысыз. Төмендегі сөйлемді English тіліне аударыңыз.",
        "prefix": "<src=kk><tgt=en>"
    },
    "Kazakh to Russian": {
        "system": "Сіз кәсіби аудармашысыз. Төмендегі сөйлемді орыс тіліне аударыңыз.",
        "prefix": "<src=kk><tgt=ru>"
    },
    "Russian to Kazakh": {
        "system": "Вы профессиональный переводчик. Переведите следующее предложение на қазақ язык.",
        "prefix": "<src=ru><tgt=kk>"
    }
}

llm = None
llm_model = None

def respond(
    message: str,
    history: List[Tuple[str, str]],
    model: str = "gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
    direction: str = "English to Kazakh",
    max_tokens: int = 64,
    temperature: float = 0.7,
    top_p: float = 0.95,
    top_k: int = 40,
    repeat_penalty: float = 1.1,
):
    """
    Respond to a message by translating it using the specified direction.
    
    Args:
        message (str): The text to translate.
        history (List[Tuple[str, str]]): The chat history.
        direction (str): The translation direction (e.g., "English to Kazakh").
        model (str): The model file to use.
        max_tokens (int): Maximum number of tokens to generate.
        temperature (float): Sampling temperature.
        top_p (float): Top-p sampling parameter.
        top_k (int): Top-k sampling parameter.
        repeat_penalty (float): Penalty for repetition.
    
    Yields:
        str: The translated text as it is generated.
    """
    
    global llm, llm_model
    if llm is None or llm_model != model:
        model_path = f"models/{model}"
        if not os.path.exists(model_path):
            yield f"Error: Model file not found at {model_path}."
            return
        llm = Llama(
            model_path=model_path,
            flash_attn=False,
            n_gpu_layers=0,
            n_batch=8,
            n_ctx=2048,
            n_threads=8,
            n_threads_batch=8,
        )
        llm_model = model
    provider = LlamaCppPythonProvider(llm)

    # Get system prompt and user prefix based on direction
    prompts = direction_to_prompts[direction]
    system_message = prompts["system"]
    user_prefix = prompts["prefix"]

    agent = LlamaCppAgent(
        provider,
        system_prompt=system_message,
        custom_messages_formatter=gemma_3_formatter,
        debug_output=True,
    )

    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()
    for user_msg, assistant_msg in history:
        full_user_msg = user_prefix + " " + user_msg
        messages.add_message({"role": Roles.user, "content": full_user_msg})
        messages.add_message({"role": Roles.assistant, "content": assistant_msg})

    full_message = user_prefix + " " + message

    stream = agent.get_chat_response(
        full_message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False,
    )

    outputs = ""
    for output in stream:
        outputs += output
        yield outputs


demo = gr.ChatInterface(
    respond,
    examples=[["Hello"], ["Сәлем"], ["Привет"]],
    additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
    additional_inputs=[
        gr.Dropdown(
            choices=[
                "gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
            ],
            value="gemma_3_800M_sft_v2_translation-kazparc_latest.gguf",
            label="Model",
            info="Select the AI model to use for chat",
        ),
        gr.Dropdown(
            choices=["English to Kazakh", "Kazakh to English", "Kazakh to Russian", "Russian to Kazakh"],
            label="Translation Direction",
            info="Select the direction of translation"
        ),
        gr.Slider(
            minimum=512,
            maximum=2048,
            value=1024,
            step=1,
            label="Max Tokens",
            info="Maximum length of the translation"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=2.0,
            value=0.7,
            step=0.1,
            label="Temperature",
            info="Controls randomness (higher = more creative)"
        ),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
            info="Nucleus sampling threshold"
        ),
        gr.Slider(
            minimum=1,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
            info="Limits vocabulary to top K tokens"
        ),
        gr.Slider(
            minimum=1.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition Penalty",
            info="Penalizes repeated words"
        ),
    ],
    theme="Ocean",
    submit_btn="Translate",
    stop_btn="Stop",
    title="Kazakh Translation Model",
    description="Translate text between Kazakh, English, and Russian using a specialized language model.",
    chatbot=gr.Chatbot(scale=1, show_copy_button=True),
    cache_examples=False,
)

if __name__ == "__main__":
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_api=False,
    )