RavindraDubey12 commited on
Commit
448ad50
·
1 Parent(s): 80145d6

first commit

Browse files
tourism_package_prediction/data/test_data.csv ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CustomerID,Age,TypeofContact,CityTier,DurationOfPitch,Occupation,Gender,NumberOfPersonVisiting,NumberOfFollowups,ProductPitched,PreferredPropertyStar,MaritalStatus,NumberOfTrips,Passport,PitchSatisfactionScore,OwnCar,NumberOfChildrenVisiting,Designation,MonthlyIncome,IncomeCategory,AgeGroup,ProdTaken
2
+ 400000,36.0,1,1,12.0,2,1,2,3.0,0,3.0,1,1.0,0,5,1,1.0,1,18210.0,1,2,0
3
+ 400001,33.0,1,1,27.0,3,1,3,1.0,0,4.0,1,2.0,0,1,1,1.0,1,17028.0,1,1,0
4
+ 400002,26.0,1,2,31.0,2,0,3,3.0,0,3.0,1,2.0,0,4,1,1.0,1,17942.0,1,1,0
5
+ 400003,46.0,0,1,30.0,2,1,3,4.0,1,5.0,0,3.0,1,2,1,1.0,2,22311.0,1,3,0
6
+ 400004,22.0,1,1,7.0,1,0,4,5.0,0,4.0,2,3.0,1,5,1,2.0,1,20748.0,1,0,0
7
+ 400005,26.0,1,1,6.0,3,1,3,3.0,0,5.0,2,1.0,0,5,1,2.0,1,17867.0,1,1,0
8
+ 400006,33.0,1,1,12.0,2,1,3,5.0,1,3.0,3,2.0,0,1,0,2.0,2,28357.0,2,1,0
9
+ 400007,36.0,1,1,7.0,2,0,3,2.0,0,3.0,2,5.0,0,3,1,2.0,1,21184.0,1,2,0
10
+ 400008,40.0,1,1,17.0,3,1,4,4.0,3,3.0,2,2.0,0,3,1,1.0,3,32142.0,2,2,0
11
+ 400009,54.0,1,3,9.0,2,0,4,5.0,4,3.0,0,4.0,0,3,1,1.0,0,34105.0,2,3,0
12
+ 400010,37.0,1,3,17.0,3,1,3,5.0,3,5.0,1,2.0,0,5,0,1.0,3,25772.0,2,2,1
13
+ 400011,36.0,1,1,16.0,1,0,3,3.0,3,3.0,0,4.0,0,3,0,2.0,3,22094.0,1,2,0
14
+ 400012,30.0,0,1,9.0,3,0,3,3.0,0,3.0,1,2.0,0,3,1,1.0,1,17083.0,1,1,0
15
+ 400013,33.0,1,1,9.0,2,1,4,4.0,0,4.0,2,3.0,0,3,1,2.0,1,20071.0,1,1,1
16
+ 400014,41.0,0,3,15.0,2,1,2,5.0,4,3.0,1,1.0,0,5,1,1.0,0,21151.0,1,2,1
17
+ 400015,31.0,0,3,6.0,2,0,2,5.0,0,3.0,2,2.0,0,3,1,1.0,1,16359.0,1,1,1
18
+ 400016,43.0,1,1,31.0,3,1,3,4.0,3,5.0,0,3.0,1,2,1,2.0,3,26084.0,2,2,0
19
+ 400017,32.0,1,3,13.0,3,1,4,3.0,1,3.0,1,6.0,0,5,1,3.0,2,24138.0,1,1,0
20
+ 400018,29.0,1,3,8.0,3,1,3,4.0,1,4.0,1,3.0,0,4,1,0.0,2,21644.0,1,1,0
21
+ 400019,30.0,0,3,20.0,1,0,3,4.0,1,4.0,3,7.0,0,3,0,2.0,2,24443.0,1,1,1
22
+ 400020,41.0,1,3,17.0,3,1,4,5.0,3,4.0,1,4.0,0,4,1,2.0,3,28383.0,2,2,0
23
+ 400021,30.0,1,1,34.0,3,0,3,3.0,1,3.0,1,2.0,0,3,1,2.0,2,20775.0,1,1,0
24
+ 400022,31.0,1,1,17.0,2,1,2,3.0,0,3.0,1,4.0,1,3,0,0.0,1,17356.0,1,1,0
25
+ 400023,36.0,1,1,7.0,3,1,3,5.0,0,3.0,1,8.0,0,1,1,2.0,1,20936.0,1,2,0
26
+ 400024,48.0,1,1,7.0,1,1,4,4.0,0,3.0,0,2.0,0,3,1,1.0,1,22098.0,1,3,0
27
+ 400025,35.0,0,1,7.0,2,1,4,4.0,0,5.0,1,7.0,0,1,1,3.0,1,21674.0,1,1,0
28
+ 400026,35.0,1,1,15.0,3,1,3,2.0,1,3.0,1,4.0,0,3,0,2.0,2,23082.0,1,1,0
29
+ 400027,31.0,1,1,13.0,3,0,2,3.0,3,3.0,3,2.0,1,4,1,1.0,3,22143.0,1,1,0
30
+ 400028,35.0,0,1,10.0,2,1,3,5.0,0,3.0,0,5.0,0,2,1,1.0,1,21657.0,1,1,0
31
+ 400029,22.0,0,1,32.0,2,0,2,4.0,0,3.0,1,2.0,1,3,0,0.0,1,17814.0,1,0,0
32
+ 400030,33.0,1,3,15.0,3,1,3,2.0,1,3.0,0,3.0,0,5,0,1.0,2,24887.0,1,1,0
33
+ 400031,43.0,0,1,17.0,1,1,3,4.0,0,3.0,1,5.0,0,4,1,1.0,1,21614.0,1,2,0
34
+ 400032,38.0,1,1,8.0,2,1,2,3.0,1,3.0,1,1.0,0,1,1,1.0,2,21553.0,1,2,0
35
+ 400033,36.0,1,1,9.0,2,1,3,1.0,1,5.0,1,7.0,0,1,1,2.0,2,21842.0,1,2,0
36
+ 400034,25.0,1,3,34.0,2,1,2,4.0,1,3.0,1,3.0,0,4,1,1.0,2,23639.0,1,0,0
37
+ 400035,59.0,0,3,9.0,3,1,3,4.0,4,4.0,1,6.0,0,4,1,1.0,0,21383.0,1,4,0
38
+ 400036,34.0,1,1,7.0,2,0,3,5.0,1,3.0,3,2.0,0,4,1,2.0,2,25627.0,2,1,0
39
+ 400037,31.0,0,1,7.0,2,1,3,5.0,3,3.0,3,3.0,0,5,1,2.0,3,27152.0,2,1,0
40
+ 400038,34.0,0,1,7.0,2,0,3,2.0,1,4.0,1,3.0,1,3,1,1.0,2,24166.0,1,1,0
41
+ 400039,45.0,1,3,8.0,2,1,3,6.0,1,4.0,2,8.0,0,3,0,2.0,2,21040.0,1,2,1
42
+ 400040,40.0,1,3,28.0,3,1,3,4.0,1,3.0,1,3.0,1,3,1,0.0,2,21380.0,1,2,1
43
+ 400041,40.0,1,1,25.0,3,1,1,3.0,1,3.0,1,1.0,1,1,1,0.0,2,17741.0,1,2,0
44
+ 400042,26.0,1,1,12.0,2,0,3,3.0,0,3.0,1,2.0,1,1,0,1.0,1,17659.0,1,1,0
45
+ 400043,22.0,0,3,7.0,1,0,4,5.0,0,4.0,2,3.0,1,5,1,3.0,1,20852.0,1,0,1
46
+ 400044,37.0,0,1,6.0,3,0,3,3.0,3,3.0,1,3.0,1,3,0,0.0,3,28603.0,2,2,0
47
+ 400045,38.0,1,3,13.0,3,1,4,4.0,1,3.0,1,6.0,0,3,1,1.0,2,25180.0,2,2,0
48
+ 400046,33.0,0,3,28.0,3,1,3,3.0,1,4.0,1,1.0,0,1,0,0.0,2,21146.0,1,1,0
49
+ 400047,53.0,1,1,9.0,2,0,3,5.0,0,3.0,3,2.0,0,3,1,1.0,1,21890.0,1,3,0
50
+ 400048,36.0,0,1,9.0,2,0,3,5.0,0,5.0,3,4.0,1,3,0,1.0,1,22184.0,1,2,1
51
+ 400049,47.0,0,3,9.0,3,0,2,3.0,4,3.0,1,1.0,1,5,1,1.0,0,28770.0,2,3,0
52
+ 400050,32.0,1,1,35.0,2,0,2,4.0,0,4.0,2,2.0,0,3,1,0.0,1,17837.0,1,1,0
53
+ 400051,31.0,1,1,29.0,3,1,3,4.0,1,3.0,0,1.0,0,3,1,1.0,2,20582.0,1,1,0
54
+ 400052,46.0,1,1,6.0,3,1,3,3.0,3,5.0,1,1.0,0,2,0,0.0,3,24396.0,1,3,0
55
+ 400053,30.0,0,1,29.0,2,1,3,5.0,0,3.0,1,2.0,0,3,0,0.0,1,17613.0,1,1,0
56
+ 400054,42.0,1,3,14.0,3,1,2,3.0,1,4.0,0,1.0,0,3,0,1.0,2,21825.0,1,2,0
57
+ 400055,36.0,0,1,24.0,3,0,3,3.0,0,3.0,2,2.0,0,3,1,2.0,1,17153.0,1,2,0
58
+ 400056,58.0,1,1,8.0,1,1,2,3.0,0,3.0,2,5.0,0,1,0,0.0,1,17479.0,1,4,1
59
+ 400057,36.0,1,1,14.0,1,0,2,3.0,3,3.0,1,2.0,0,4,1,0.0,3,25096.0,2,2,0
60
+ 400058,29.0,1,1,6.0,1,1,3,4.0,0,5.0,2,7.0,0,3,0,2.0,1,17362.0,1,1,1
61
+ 400059,29.0,1,1,9.0,3,1,3,6.0,0,3.0,0,7.0,1,3,1,1.0,1,22142.0,1,1,1
62
+ 400060,35.0,1,3,8.0,3,0,3,3.0,0,3.0,0,2.0,0,2,1,0.0,1,17014.0,1,1,0
63
+ 400061,23.0,1,1,26.0,2,1,3,3.0,1,3.0,2,1.0,0,4,1,2.0,2,17272.0,1,0,0
64
+ 400062,56.0,1,1,13.0,1,1,3,3.0,0,3.0,1,1.0,0,4,1,2.0,1,17339.0,1,4,1
65
+ 400063,54.0,1,3,9.0,3,0,2,3.0,1,5.0,0,3.0,0,4,1,1.0,2,20940.0,1,3,0
66
+ 400064,35.0,0,3,30.0,3,1,4,4.0,1,3.0,3,2.0,0,5,1,2.0,2,23246.0,1,1,0
67
+ 400065,42.0,1,3,7.0,2,0,4,4.0,1,3.0,3,2.0,1,2,1,1.0,2,24671.0,1,2,1
68
+ 400066,36.0,1,1,12.0,1,1,4,4.0,3,4.0,3,2.0,0,3,1,2.0,3,26773.0,2,2,0
69
+ 400067,43.0,0,1,16.0,2,0,2,4.0,1,3.0,1,2.0,0,3,1,0.0,2,20257.0,1,2,0
70
+ 400068,44.0,1,3,32.0,3,1,4,5.0,3,3.0,1,7.0,0,4,1,2.0,3,29476.0,2,2,0
71
+ 400069,40.0,1,3,9.0,2,1,3,2.0,3,3.0,3,2.0,0,1,0,1.0,3,26558.0,2,2,0
72
+ 400070,37.0,1,3,24.0,3,1,3,5.0,1,4.0,1,4.0,0,4,1,1.0,2,24185.0,1,2,0
73
+ 400071,41.0,0,3,10.0,3,1,2,3.0,1,4.0,3,2.0,0,3,1,0.0,2,24355.0,1,2,1
74
+ 400072,39.0,1,1,9.0,3,1,4,4.0,0,3.0,0,8.0,1,4,0,1.0,1,21735.0,1,2,0
75
+ 400073,26.0,1,3,15.0,2,1,3,3.0,1,4.0,0,2.0,0,4,0,1.0,2,23529.0,1,1,0
76
+ 400074,61.0,0,3,35.0,3,0,4,5.0,3,5.0,0,6.0,0,2,1,1.0,3,28944.0,2,4,0
77
+ 400075,31.0,1,3,14.0,3,0,4,4.0,1,5.0,1,2.0,0,3,1,1.0,2,23457.0,1,1,0
78
+ 400076,33.0,1,3,11.0,3,1,3,6.0,3,3.0,1,3.0,0,1,1,1.0,3,29078.0,2,1,1
79
+ 400077,28.0,0,1,31.0,2,1,4,5.0,0,3.0,2,3.0,1,3,1,2.0,1,21212.0,1,1,1
80
+ 400078,35.0,0,3,13.0,3,0,3,6.0,0,3.0,1,2.0,0,4,0,2.0,1,21029.0,1,1,1
81
+ 400079,49.0,1,3,14.0,1,1,2,4.0,4,4.0,0,7.0,0,4,1,0.0,0,28120.0,2,3,0
82
+ 400080,34.0,1,1,26.0,1,0,2,1.0,0,3.0,0,1.0,0,1,1,0.0,1,17585.0,1,1,0
83
+ 400081,40.0,1,1,14.0,2,0,3,3.0,1,5.0,1,3.0,1,1,0,0.0,2,21516.0,1,2,0
84
+ 400082,28.0,0,3,7.0,3,1,4,4.0,1,4.0,1,2.0,1,1,0,2.0,2,25027.0,2,1,0
85
+ 400083,52.0,1,3,31.0,3,0,3,5.0,1,4.0,3,2.0,1,5,1,2.0,2,21516.0,1,3,1
86
+ 400084,60.0,1,3,22.0,3,1,2,3.0,1,5.0,2,1.0,0,4,1,0.0,2,20405.0,1,4,0
87
+ 400085,30.0,1,3,33.0,3,1,2,3.0,1,3.0,1,1.0,0,3,1,0.0,2,20304.0,1,1,0
88
+ 400086,31.0,1,3,13.0,2,1,2,4.0,0,3.0,1,4.0,0,4,1,1.0,1,17329.0,1,1,0
89
+ 400087,44.0,0,1,23.0,2,1,3,5.0,0,3.0,2,3.0,0,4,1,0.0,1,17290.0,1,2,0
90
+ 400088,45.0,1,3,35.0,3,0,3,2.0,4,3.0,1,5.0,1,1,1,1.0,0,31998.0,2,2,0
91
+ 400089,38.0,1,1,26.0,2,1,4,4.0,0,4.0,0,6.0,0,4,1,2.0,1,21700.0,1,2,0
92
+ 400090,34.0,0,1,22.0,2,0,3,4.0,0,3.0,2,2.0,0,5,1,1.0,1,17553.0,1,1,0
93
+ 400091,42.0,1,1,8.0,3,1,2,3.0,4,5.0,0,1.0,0,3,1,1.0,0,32665.0,2,2,0
94
+ 400092,35.0,1,1,15.0,3,0,4,4.0,1,3.0,3,5.0,0,4,1,2.0,2,24820.0,1,1,0
95
+ 400093,21.0,1,1,9.0,3,1,3,4.0,0,3.0,2,2.0,0,5,1,2.0,1,18230.0,1,0,0
96
+ 400094,34.0,0,1,10.0,2,1,4,4.0,0,5.0,3,3.0,1,5,1,3.0,1,22026.0,1,1,1
97
+ 400095,51.0,1,3,15.0,3,1,3,4.0,0,4.0,1,2.0,0,1,0,2.0,1,22553.0,1,3,0
98
+ 400096,26.0,1,3,15.0,2,0,3,4.0,1,3.0,1,2.0,1,1,1,2.0,2,23585.0,1,1,0
99
+ 400097,32.0,0,3,27.0,3,0,3,4.0,1,3.0,1,3.0,0,1,1,2.0,2,25610.0,2,1,0
100
+ 400098,46.0,0,3,9.0,2,0,4,4.0,1,3.0,1,6.0,0,1,1,3.0,2,23832.0,1,3,0
101
+ 400099,32.0,1,1,16.0,2,1,3,4.0,3,4.0,1,3.0,0,3,1,2.0,3,29326.0,2,1,0
102
+ 400100,29.0,1,1,24.0,3,1,2,4.0,0,3.0,2,2.0,1,3,0,1.0,1,17389.0,1,1,1
103
+ 400101,41.0,0,1,15.0,2,1,4,4.0,1,3.0,1,5.0,1,3,1,2.0,2,22747.0,1,2,0
104
+ 400102,31.0,1,3,12.0,3,1,3,2.0,1,3.0,1,5.0,0,5,1,2.0,2,20460.0,1,1,0
105
+ 400103,40.0,1,1,8.0,3,1,2,3.0,2,3.0,1,1.0,0,5,0,0.0,4,34436.0,2,2,0
106
+ 400104,35.0,1,1,13.0,2,1,3,3.0,0,4.0,2,2.0,1,3,1,1.0,1,20363.0,1,1,1
107
+ 400105,41.0,0,1,15.0,3,1,3,3.0,2,3.0,1,3.0,0,4,1,2.0,4,34419.0,2,2,0
108
+ 400106,42.0,1,3,15.0,3,0,3,4.0,1,4.0,1,7.0,0,3,1,2.0,2,23071.0,1,2,0
109
+ 400107,44.0,1,1,15.0,2,1,3,3.0,0,5.0,1,2.0,1,3,1,0.0,1,17559.0,1,2,0
110
+ 400108,38.0,0,1,7.0,3,0,2,4.0,3,3.0,1,4.0,1,3,0,1.0,3,32281.0,2,2,0
111
+ 400109,27.0,1,1,9.0,3,1,2,4.0,0,3.0,2,1.0,0,1,1,1.0,1,17045.0,1,1,0
112
+ 400110,57.0,1,3,35.0,3,1,2,4.0,4,3.0,1,4.0,0,3,1,0.0,0,29118.0,2,4,0
113
+ 400111,31.0,0,3,33.0,3,0,3,5.0,1,5.0,3,7.0,0,1,1,2.0,2,25374.0,2,1,1
114
+ 400112,38.0,1,1,23.0,2,0,3,4.0,3,3.0,0,1.0,0,2,0,2.0,3,23823.0,1,2,0
115
+ 400113,36.0,1,2,14.0,2,1,3,4.0,0,5.0,1,1.0,0,1,0,1.0,1,17342.0,1,2,0
116
+ 400114,32.0,0,1,13.0,2,1,3,1.0,0,4.0,1,2.0,0,1,0,1.0,1,17794.0,1,1,0
117
+ 400115,30.0,0,1,27.0,3,1,3,4.0,0,3.0,1,3.0,0,3,1,2.0,1,22490.0,1,1,0
118
+ 400116,32.0,1,3,27.0,2,0,4,6.0,1,3.0,1,5.0,1,3,0,3.0,2,23237.0,1,1,1
119
+ 400117,38.0,1,1,6.0,2,0,2,1.0,1,3.0,3,1.0,0,1,0,0.0,2,22625.0,1,2,0
120
+ 400118,38.0,1,1,17.0,3,0,4,4.0,0,5.0,1,8.0,0,1,1,3.0,1,22130.0,1,2,0
121
+ 400119,49.0,1,1,9.0,1,1,4,2.0,0,4.0,2,7.0,0,2,0,3.0,1,21237.0,1,3,0
122
+ 400120,19.0,1,3,27.0,2,1,2,4.0,0,4.0,2,2.0,1,2,0,1.0,1,17121.0,1,0,1
123
+ 400121,36.0,1,1,14.0,1,0,2,3.0,3,3.0,1,2.0,0,4,1,1.0,3,25096.0,2,2,0
124
+ 400122,59.0,1,1,9.0,2,1,3,4.0,0,3.0,0,4.0,0,3,0,1.0,1,17177.0,1,4,0
125
+ 400123,47.0,1,1,20.0,2,1,3,4.0,1,4.0,3,8.0,0,4,1,1.0,2,24240.0,1,3,0
126
+ 400124,32.0,1,1,31.0,3,0,4,5.0,1,5.0,3,3.0,0,5,0,3.0,2,25490.0,2,1,0
127
+ 400125,40.0,1,1,16.0,2,0,2,1.0,0,3.0,1,4.0,1,3,0,1.0,1,17213.0,1,2,0
128
+ 400126,34.0,0,1,36.0,3,0,3,5.0,1,3.0,3,3.0,0,5,1,1.0,2,23186.0,1,1,1
129
+ 400127,41.0,1,1,22.0,2,0,4,5.0,3,3.0,1,3.0,0,1,1,2.0,3,29113.0,2,2,0
130
+ 400128,36.0,1,1,34.0,3,0,3,5.0,0,5.0,2,3.0,0,4,0,2.0,1,21237.0,1,2,0
131
+ 400129,30.0,1,1,8.0,3,1,2,4.0,0,3.0,2,1.0,0,4,0,0.0,1,17720.0,1,1,0
132
+ 400130,20.0,1,1,9.0,2,1,2,4.0,0,3.0,2,2.0,0,3,0,1.0,1,18033.0,1,0,0
133
+ 400131,27.0,0,1,9.0,2,1,3,4.0,0,5.0,0,8.0,1,5,1,1.0,1,20720.0,1,1,1
134
+ 400132,46.0,1,1,8.0,2,1,2,3.0,4,3.0,1,7.0,0,5,1,0.0,0,32861.0,2,3,0
135
+ 400133,55.0,1,1,26.0,3,0,4,4.0,1,5.0,1,2.0,1,3,0,1.0,2,24163.0,1,3,0
136
+ 400134,61.0,1,1,14.0,2,0,3,4.0,2,5.0,1,7.0,0,5,1,1.0,4,38244.0,3,4,0
137
+ 400135,52.0,1,1,15.0,2,1,3,5.0,3,4.0,1,7.0,0,3,1,2.0,3,31168.0,2,3,0
138
+ 400136,51.0,1,3,33.0,2,1,2,3.0,1,3.0,2,2.0,1,5,1,1.0,2,29026.0,2,3,1
139
+ 400137,43.0,0,3,32.0,2,1,3,3.0,4,3.0,0,2.0,1,2,0,0.0,0,31959.0,2,2,0
140
+ 400138,55.0,1,3,9.0,2,0,3,5.0,3,3.0,1,8.0,0,5,1,2.0,3,29364.0,2,3,0
141
+ 400139,36.0,0,3,9.0,3,1,2,4.0,3,3.0,0,5.0,0,2,0,1.0,3,24699.0,1,2,0
142
+ 400140,31.0,0,1,12.0,3,0,3,4.0,0,4.0,2,2.0,0,3,0,1.0,1,21100.0,1,1,1
143
+ 400141,48.0,0,1,36.0,2,1,3,4.0,3,4.0,0,3.0,1,3,1,1.0,3,30527.0,2,3,1
144
+ 400142,55.0,1,1,8.0,3,1,2,4.0,2,5.0,1,1.0,0,5,0,1.0,4,34038.0,2,3,0
145
+ 400143,33.0,1,3,7.0,3,1,4,5.0,0,4.0,1,2.0,0,1,0,3.0,1,20947.0,1,1,0
146
+ 400144,37.0,0,1,25.0,2,1,4,4.0,1,3.0,3,4.0,0,3,1,1.0,2,26457.0,2,2,0
147
+ 400145,28.0,0,3,10.0,3,0,4,3.0,1,3.0,1,3.0,1,2,1,3.0,2,23325.0,1,1,0
148
+ 400146,57.0,0,1,16.0,3,0,4,4.0,0,3.0,0,4.0,0,2,0,1.0,1,21620.0,1,4,0
149
+ 400147,35.0,0,1,8.0,3,1,2,3.0,1,3.0,1,3.0,0,3,0,1.0,2,20762.0,1,1,0
150
+ 400148,24.0,1,1,24.0,2,1,2,3.0,0,3.0,0,1.0,0,4,1,0.0,1,17774.0,1,0,0
151
+ 400149,53.0,0,3,8.0,3,0,2,4.0,3,4.0,1,3.0,0,1,1,0.0,3,22525.0,1,3,0
152
+ 400150,31.0,1,3,14.0,2,1,2,3.0,3,3.0,1,2.0,0,3,1,0.0,3,25793.0,2,1,0
153
+ 400151,31.0,1,3,12.0,3,0,2,5.0,1,3.0,1,3.0,0,1,1,1.0,2,24796.0,1,1,0
154
+ 400152,29.0,1,1,13.0,1,0,2,3.0,0,3.0,1,4.0,1,4,1,0.0,1,31124.0,2,1,1
155
+ 400153,29.0,1,1,14.0,2,1,3,5.0,0,5.0,0,2.0,1,3,1,1.0,1,17119.0,1,1,1
156
+ 400154,35.0,0,1,17.0,3,1,3,4.0,3,5.0,0,3.0,1,5,1,1.0,3,24884.0,1,1,0
157
+ 400155,30.0,0,1,11.0,3,0,2,3.0,0,4.0,2,1.0,0,3,0,0.0,1,17422.0,1,1,1
158
+ 400156,33.0,1,1,10.0,3,0,2,4.0,0,4.0,0,7.0,0,4,0,0.0,1,17622.0,1,1,0
159
+ 400157,36.0,1,1,6.0,1,0,3,5.0,3,5.0,1,3.0,1,2,1,2.0,3,25252.0,2,2,0
160
+ 400158,38.0,1,1,18.0,3,0,4,4.0,0,3.0,3,6.0,0,3,0,2.0,1,22307.0,1,2,0
161
+ 400159,32.0,1,1,14.0,3,0,3,4.0,3,3.0,3,3.0,1,4,1,2.0,3,25821.0,2,1,0
162
+ 400160,42.0,1,1,19.0,2,1,3,4.0,0,3.0,1,5.0,1,3,1,1.0,1,23444.0,1,2,0
163
+ 400161,40.0,1,3,10.0,3,1,3,4.0,3,3.0,0,1.0,0,2,1,0.0,3,25855.0,2,2,0
164
+ 400162,35.0,1,1,24.0,2,1,2,1.0,1,5.0,1,2.0,0,3,0,1.0,2,20208.0,1,1,0
165
+ 400163,51.0,1,1,31.0,2,1,4,4.0,4,3.0,1,5.0,1,4,1,3.0,0,32651.0,2,3,0
166
+ 400164,40.0,1,3,31.0,3,0,3,5.0,4,3.0,1,2.0,0,1,1,2.0,0,30709.0,2,2,0
167
+ 400165,31.0,0,1,11.0,1,1,3,4.0,0,3.0,2,20.0,1,4,1,2.0,1,20963.0,1,1,1
168
+ 400166,50.0,1,1,23.0,2,0,2,4.0,3,5.0,1,6.0,0,3,1,0.0,3,28269.0,2,3,0
169
+ 400167,30.0,1,1,22.0,2,1,2,1.0,1,3.0,1,4.0,0,1,1,0.0,2,20294.0,1,1,0
170
+ 400168,27.0,1,1,10.0,2,1,3,3.0,0,3.0,1,2.0,0,4,1,1.0,1,17517.0,1,1,0
171
+ 400169,41.0,0,3,31.0,2,0,4,2.0,4,4.0,2,6.0,1,3,1,1.0,0,31872.0,2,2,1
172
+ 400170,36.0,0,1,7.0,3,1,4,4.0,0,5.0,1,6.0,0,1,0,2.0,1,20872.0,1,2,0
173
+ 400171,44.0,0,3,22.0,2,1,3,5.0,1,3.0,0,5.0,0,5,0,2.0,2,25482.0,2,2,0
174
+ 400172,31.0,1,1,9.0,2,0,3,6.0,1,3.0,3,4.0,0,1,1,1.0,2,24769.0,1,1,0
175
+ 400173,40.0,1,1,31.0,2,1,3,4.0,1,3.0,3,2.0,0,4,1,1.0,2,22786.0,1,2,0
176
+ 400174,27.0,0,1,16.0,2,1,2,3.0,3,5.0,1,2.0,0,3,0,1.0,3,23793.0,1,1,0
177
+ 400175,55.0,1,1,15.0,2,0,3,4.0,1,3.0,3,2.0,0,2,1,1.0,2,22458.0,1,3,0
178
+ 400176,29.0,0,1,31.0,1,1,4,5.0,3,5.0,3,3.0,0,1,1,2.0,3,27400.0,2,1,1
179
+ 400177,28.0,1,1,15.0,3,0,3,3.0,0,3.0,1,6.0,0,3,0,0.0,1,17377.0,1,1,0
180
+ 400178,57.0,1,1,16.0,3,1,3,4.0,4,3.0,1,2.0,0,4,0,1.0,0,29781.0,2,4,0
181
+ 400179,37.0,1,2,12.0,2,1,3,3.0,0,5.0,1,5.0,1,1,0,2.0,1,17073.0,1,2,1
182
+ 400180,28.0,1,1,14.0,2,0,3,3.0,0,3.0,2,2.0,0,4,0,1.0,1,18310.0,1,1,0
183
+ 400181,34.0,1,1,12.0,2,0,4,5.0,0,3.0,1,3.0,0,1,0,1.0,1,21589.0,1,1,0
184
+ 400182,45.0,0,1,13.0,2,1,3,2.0,1,3.0,0,5.0,0,2,0,2.0,2,21434.0,1,2,0
185
+ 400183,41.0,1,3,9.0,2,1,2,4.0,1,4.0,1,3.0,0,3,0,1.0,2,23938.0,1,2,0
186
+ 400184,34.0,1,1,33.0,3,0,3,3.0,0,4.0,2,3.0,0,3,1,0.0,1,17311.0,1,1,0
187
+ 400185,46.0,0,1,14.0,2,1,4,3.0,1,3.0,0,6.0,0,2,0,3.0,2,25112.0,2,3,0
188
+ 400186,56.0,1,1,29.0,1,1,4,5.0,0,4.0,1,7.0,0,1,1,2.0,1,22215.0,1,4,0
189
+ 400187,34.0,0,1,7.0,2,0,4,4.0,3,3.0,2,3.0,1,1,1,1.0,3,32136.0,2,1,0
190
+ 400188,38.0,0,1,12.0,1,1,3,2.0,0,3.0,3,2.0,0,5,1,1.0,1,22178.0,1,2,0
191
+ 400189,51.0,1,1,14.0,2,1,2,4.0,3,4.0,0,6.0,0,3,1,1.0,3,27490.0,2,3,0
192
+ 400190,21.0,1,1,7.0,2,0,3,5.0,0,4.0,3,3.0,0,4,0,2.0,1,21514.0,1,0,0
193
+ 400191,28.0,0,1,16.0,3,1,3,4.0,0,4.0,1,8.0,0,3,1,2.0,1,20702.0,1,1,0
194
+ 400192,25.0,0,1,16.0,2,1,3,5.0,0,4.0,1,3.0,0,5,1,1.0,1,21372.0,1,0,0
195
+ 400193,39.0,1,1,9.0,3,1,3,4.0,1,4.0,1,6.0,0,4,0,1.0,2,23533.0,1,2,1
196
+ 400194,30.0,1,1,15.0,2,1,4,6.0,0,5.0,1,3.0,1,3,0,2.0,1,20797.0,1,1,1
197
+ 400195,44.0,1,1,6.0,3,1,2,3.0,0,3.0,2,7.0,1,4,0,1.0,1,17436.0,1,2,0
198
+ 400196,29.0,1,1,23.0,3,1,4,2.0,1,5.0,3,2.0,0,5,0,2.0,2,24339.0,1,1,0
199
+ 400197,31.0,1,1,31.0,2,1,4,4.0,0,3.0,1,3.0,0,3,1,3.0,1,21371.0,1,1,0
200
+ 400198,34.0,1,3,16.0,2,0,2,3.0,0,3.0,1,2.0,1,1,0,1.0,1,17220.0,1,1,0
201
+ 400199,35.0,1,1,9.0,2,1,4,5.0,0,3.0,1,5.0,0,5,1,3.0,1,21446.0,1,1,0
202
+ 400200,27.0,1,1,8.0,2,0,2,3.0,0,5.0,1,2.0,0,3,0,1.0,1,17341.0,1,1,0
203
+ 400201,43.0,0,1,13.0,3,1,2,2.0,0,3.0,1,5.0,0,4,0,1.0,1,17089.0,1,2,0
204
+ 400202,19.0,0,3,12.0,3,1,4,4.0,0,4.0,2,3.0,1,4,1,3.0,1,20556.0,1,0,1
205
+ 400203,27.0,1,2,27.0,3,0,4,4.0,0,4.0,1,2.0,1,3,0,2.0,1,20826.0,1,1,1
206
+ 400204,28.0,1,3,11.0,3,1,3,3.0,1,3.0,2,2.0,0,3,1,0.0,2,19908.0,1,1,0
207
+ 400205,46.0,0,3,32.0,2,1,3,4.0,1,4.0,3,1.0,0,4,1,2.0,2,22991.0,1,3,0
208
+ 400206,34.0,1,1,15.0,2,1,4,4.0,1,3.0,3,4.0,1,3,0,3.0,2,25066.0,2,1,0
209
+ 400207,38.0,1,3,15.0,3,1,3,4.0,0,4.0,0,1.0,0,4,0,0.0,1,17899.0,1,2,0
210
+ 400208,53.0,0,1,26.0,3,1,3,4.0,0,3.0,1,2.0,0,3,1,1.0,1,22936.0,1,3,0
211
+ 400209,53.0,1,1,29.0,2,0,3,3.0,4,3.0,2,7.0,0,5,1,1.0,0,29275.0,2,3,0
212
+ 400210,38.0,1,1,7.0,2,0,3,4.0,0,3.0,2,3.0,0,2,1,2.0,1,20793.0,1,2,0
213
+ 400211,37.0,1,1,16.0,3,1,3,5.0,1,4.0,1,4.0,1,4,0,2.0,2,27525.0,2,2,0
214
+ 400212,53.0,1,1,10.0,3,1,3,5.0,3,3.0,0,4.0,1,2,0,1.0,3,26647.0,2,3,0
215
+ 400213,39.0,0,1,15.0,3,0,3,5.0,1,4.0,1,3.0,1,1,1,1.0,2,20811.0,1,2,0
216
+ 400214,48.0,0,3,34.0,2,0,4,2.0,1,3.0,3,6.0,1,4,0,2.0,2,25075.0,2,3,1
217
+ 400215,44.0,1,1,9.0,3,0,4,3.0,0,3.0,1,3.0,0,2,0,2.0,1,21323.0,1,2,0
tourism_package_prediction/data/tourism.csv ADDED
The diff for this file is too large to render. See raw diff
 
tourism_package_prediction/data/train_data.csv ADDED
@@ -0,0 +1,865 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CustomerID,Age,TypeofContact,CityTier,DurationOfPitch,Occupation,Gender,NumberOfPersonVisiting,NumberOfFollowups,ProductPitched,PreferredPropertyStar,MaritalStatus,NumberOfTrips,Passport,PitchSatisfactionScore,OwnCar,NumberOfChildrenVisiting,Designation,MonthlyIncome,IncomeCategory,AgeGroup,ProdTaken
2
+ 300000,38.0,1,1,17.0,3,0,4,4.0,0,5.0,0,8.0,0,2,1,2.0,1,22130.0,1,2,0
3
+ 300001,30.0,1,1,35.0,2,0,4,4.0,0,3.0,1,6.0,0,5,0,2.0,1,21192.0,1,1,0
4
+ 300002,46.0,1,1,6.0,3,1,3,3.0,3,5.0,1,1.0,0,1,0,2.0,3,24396.0,1,3,0
5
+ 300003,30.0,1,1,14.0,2,0,3,1.0,3,5.0,0,1.0,1,2,0,2.0,3,26416.0,2,1,0
6
+ 300004,20.0,1,2,9.0,1,1,3,5.0,0,3.0,2,3.0,0,3,1,2.0,1,21242.0,1,0,1
7
+ 300005,35.0,1,1,15.0,2,1,3,4.0,1,4.0,3,1.0,0,2,1,2.0,2,21540.0,1,1,0
8
+ 300006,37.0,0,3,15.0,2,1,4,5.0,3,5.0,3,3.0,0,2,0,3.0,3,26265.0,2,2,0
9
+ 300007,41.0,0,3,12.0,2,1,3,5.0,3,5.0,1,7.0,1,5,0,1.0,3,29153.0,2,2,0
10
+ 300008,42.0,1,3,11.0,3,1,2,3.0,2,3.0,0,7.0,0,4,0,1.0,4,33303.0,2,2,0
11
+ 300009,45.0,1,1,26.0,3,1,3,5.0,3,5.0,1,3.0,1,3,0,0.0,3,25851.0,2,2,0
12
+ 300010,46.0,1,1,14.0,2,1,3,4.0,3,5.0,1,4.0,0,3,0,1.0,3,28402.0,2,3,0
13
+ 300011,58.0,0,1,6.0,2,1,2,5.0,1,3.0,1,3.0,1,1,1,1.0,2,20660.0,1,4,0
14
+ 300012,31.0,1,3,13.0,2,1,2,4.0,3,3.0,1,1.0,0,3,1,0.0,3,26557.0,2,1,0
15
+ 300013,37.0,1,1,9.0,2,0,4,4.0,0,3.0,0,6.0,0,5,1,1.0,1,21221.0,1,2,0
16
+ 300014,46.0,1,1,8.0,2,1,2,3.0,4,3.0,0,7.0,0,5,0,0.0,0,32861.0,2,3,0
17
+ 300015,39.0,1,3,10.0,2,0,2,4.0,1,3.0,1,5.0,0,5,1,1.0,2,20902.0,1,2,0
18
+ 300016,37.0,1,3,18.0,3,0,4,5.0,1,3.0,1,6.0,0,1,1,2.0,2,25330.0,2,2,0
19
+ 300017,52.0,0,1,7.0,3,0,2,5.0,3,5.0,3,5.0,0,1,1,1.0,3,26162.0,2,3,0
20
+ 300018,47.0,1,1,7.0,3,1,4,4.0,3,5.0,1,2.0,0,2,0,1.0,3,28074.0,2,3,0
21
+ 300019,45.0,1,3,8.0,1,1,2,5.0,1,3.0,3,1.0,0,5,1,1.0,2,21632.0,1,2,0
22
+ 300020,36.0,0,1,9.0,3,0,3,4.0,1,4.0,3,7.0,0,2,1,1.0,2,23103.0,1,2,0
23
+ 300021,26.0,0,1,11.0,3,0,2,4.0,0,3.0,0,2.0,1,2,0,1.0,1,17366.0,1,1,1
24
+ 300022,39.0,0,1,6.0,2,1,2,3.0,2,3.0,1,2.0,1,3,0,0.0,4,34197.0,2,2,0
25
+ 300023,54.0,1,1,30.0,2,0,4,4.0,4,3.0,2,8.0,0,5,1,2.0,0,32953.0,2,3,0
26
+ 300024,46.0,1,1,35.0,1,1,4,4.0,0,3.0,1,6.0,0,3,1,3.0,1,20810.0,1,3,0
27
+ 300025,48.0,1,3,11.0,2,0,3,4.0,1,3.0,3,3.0,1,3,1,2.0,2,22841.0,1,3,0
28
+ 300026,34.0,0,3,12.0,3,0,2,5.0,0,3.0,1,1.0,0,4,1,1.0,1,17351.0,1,1,1
29
+ 300027,43.0,0,1,27.0,3,1,3,3.0,0,3.0,0,1.0,0,4,0,2.0,1,17258.0,1,2,0
30
+ 300028,31.0,1,2,14.0,3,0,3,1.0,0,4.0,2,1.0,0,1,0,2.0,1,17109.0,1,1,0
31
+ 300029,47.0,0,3,33.0,2,0,3,1.0,1,3.0,3,5.0,1,4,1,2.0,2,21397.0,1,3,1
32
+ 300030,40.0,0,3,30.0,2,0,3,1.0,4,4.0,3,5.0,1,3,1,0.0,0,28194.0,2,2,1
33
+ 300031,40.0,1,2,9.0,2,0,3,5.0,1,3.0,1,2.0,0,3,1,1.0,2,23882.0,1,2,0
34
+ 300032,49.0,1,1,28.0,2,0,3,3.0,4,4.0,1,4.0,0,4,0,1.0,0,31413.0,2,3,0
35
+ 300033,33.0,0,1,7.0,1,1,4,4.0,1,5.0,1,6.0,0,4,1,3.0,2,22765.0,1,1,0
36
+ 300034,30.0,1,1,9.0,2,1,4,4.0,0,4.0,0,2.0,0,4,0,1.0,1,21381.0,1,1,0
37
+ 300035,40.0,1,1,26.0,1,1,3,3.0,3,3.0,0,5.0,0,3,1,1.0,3,25322.0,2,2,0
38
+ 300036,32.0,0,1,7.0,2,0,4,4.0,1,5.0,1,3.0,0,5,1,1.0,2,22826.0,1,1,0
39
+ 300037,30.0,1,3,30.0,2,0,3,5.0,3,5.0,1,3.0,0,3,1,2.0,3,26014.0,2,1,1
40
+ 300038,28.0,0,1,6.0,3,1,2,4.0,0,4.0,1,2.0,0,4,1,0.0,1,17596.0,1,1,1
41
+ 300039,37.0,1,1,12.0,3,1,2,1.0,1,5.0,1,5.0,1,3,1,1.0,2,20974.0,1,2,0
42
+ 300040,38.0,1,1,10.0,3,0,2,3.0,0,3.0,1,1.0,0,5,0,0.0,1,18306.0,1,2,0
43
+ 300041,43.0,1,3,19.0,3,1,4,4.0,1,3.0,1,5.0,1,1,0,1.0,2,23765.0,1,2,0
44
+ 300042,36.0,0,1,30.0,2,0,2,3.0,1,4.0,0,1.0,0,3,0,0.0,2,20674.0,1,2,0
45
+ 300043,26.0,1,1,9.0,3,1,4,2.0,0,5.0,3,2.0,0,1,0,2.0,1,22102.0,1,1,0
46
+ 300044,60.0,1,1,13.0,2,0,2,3.0,2,5.0,0,6.0,0,5,0,0.0,4,34566.0,2,4,0
47
+ 300045,37.0,0,3,22.0,3,1,3,6.0,1,3.0,1,3.0,0,1,1,1.0,2,24084.0,1,2,0
48
+ 300046,39.0,0,1,8.0,2,1,2,3.0,4,3.0,1,1.0,0,3,1,0.0,0,27169.0,2,2,1
49
+ 300047,45.0,1,1,26.0,3,1,3,3.0,4,3.0,0,1.0,1,3,0,0.0,0,28496.0,2,2,0
50
+ 300048,54.0,1,3,15.0,3,1,4,4.0,4,3.0,1,7.0,0,3,1,1.0,0,30514.0,2,3,0
51
+ 300049,52.0,1,1,7.0,2,1,4,4.0,0,3.0,0,3.0,0,4,1,1.0,1,21401.0,1,3,0
52
+ 300050,35.0,1,3,9.0,2,1,3,3.0,3,3.0,1,7.0,0,5,0,1.0,3,22823.0,1,1,0
53
+ 300051,31.0,1,2,24.0,2,1,2,1.0,0,5.0,1,1.0,0,1,1,0.0,1,17956.0,1,1,1
54
+ 300052,37.0,1,1,9.0,2,1,2,3.0,3,3.0,0,2.0,0,2,1,0.0,3,24434.0,1,2,0
55
+ 300053,20.0,1,1,32.0,2,0,3,2.0,0,3.0,3,3.0,1,5,1,1.0,1,21672.0,1,0,0
56
+ 300054,34.0,1,1,15.0,2,1,2,3.0,3,3.0,1,1.0,0,5,1,1.0,3,23500.0,1,1,0
57
+ 300055,32.0,1,1,31.0,2,1,2,3.0,0,3.0,2,2.0,1,5,0,0.0,1,17795.0,1,1,1
58
+ 300056,38.0,1,1,14.0,3,1,4,4.0,1,5.0,1,7.0,1,3,0,1.0,2,22962.0,1,2,0
59
+ 300057,36.0,1,2,15.0,1,1,4,4.0,0,3.0,3,3.0,0,5,0,2.0,1,23001.0,1,2,0
60
+ 300058,43.0,1,1,14.0,3,0,4,2.0,1,4.0,0,8.0,1,1,0,1.0,2,21050.0,1,2,0
61
+ 300059,36.0,0,1,14.0,2,0,3,1.0,3,5.0,1,1.0,0,3,0,1.0,3,26713.0,2,2,0
62
+ 300060,32.0,1,1,7.0,2,1,4,5.0,0,5.0,1,3.0,0,4,1,2.0,1,20896.0,1,1,0
63
+ 300061,48.0,1,1,8.0,1,1,3,1.0,0,4.0,2,6.0,0,2,0,2.0,1,17559.0,1,3,0
64
+ 300062,30.0,1,3,10.0,3,0,3,4.0,1,4.0,1,2.0,1,3,1,1.0,2,20209.0,1,1,0
65
+ 300063,45.0,1,1,36.0,2,1,3,4.0,1,3.0,3,3.0,0,5,1,2.0,2,23219.0,1,2,0
66
+ 300064,43.0,1,1,15.0,2,1,3,4.0,0,3.0,3,6.0,0,1,1,2.0,1,22646.0,1,2,0
67
+ 300065,56.0,1,1,15.0,3,0,3,4.0,4,3.0,1,4.0,1,3,0,2.0,0,33434.0,2,4,0
68
+ 300066,42.0,0,1,7.0,2,0,3,1.0,3,4.0,2,2.0,0,3,1,0.0,3,17372.0,1,2,1
69
+ 300067,33.0,1,1,10.0,3,0,4,4.0,1,5.0,0,3.0,0,2,1,2.0,2,25403.0,2,1,0
70
+ 300068,31.0,0,1,10.0,3,0,4,4.0,0,3.0,1,3.0,0,3,1,2.0,1,20761.0,1,1,0
71
+ 300069,25.0,1,1,31.0,3,1,3,4.0,0,4.0,3,2.0,0,5,1,1.0,1,22275.0,1,0,0
72
+ 300070,22.0,1,1,12.0,3,1,3,3.0,0,3.0,0,1.0,0,2,1,0.0,1,17773.0,1,0,0
73
+ 300071,39.0,1,1,22.0,2,1,4,5.0,3,3.0,1,2.0,1,5,1,3.0,3,30188.0,2,2,0
74
+ 300072,28.0,1,1,6.0,2,1,2,3.0,0,3.0,1,2.0,0,1,0,0.0,1,17044.0,1,1,0
75
+ 300073,49.0,1,1,14.0,2,0,2,3.0,3,4.0,0,5.0,0,4,0,0.0,3,22403.0,1,3,0
76
+ 300074,37.0,1,1,22.0,2,1,3,4.0,1,3.0,1,2.0,0,4,0,2.0,2,23512.0,1,2,1
77
+ 300075,36.0,1,3,8.0,3,1,3,4.0,3,3.0,1,2.0,0,1,1,1.0,3,22596.0,1,2,0
78
+ 300076,50.0,1,1,14.0,2,1,3,4.0,3,4.0,1,5.0,0,4,0,2.0,3,29144.0,2,3,0
79
+ 300077,28.0,0,1,17.0,2,1,3,4.0,3,5.0,1,3.0,0,3,1,1.0,3,27471.0,2,1,0
80
+ 300078,39.0,1,1,9.0,2,1,3,4.0,1,3.0,0,2.0,0,2,0,2.0,2,25231.0,2,2,0
81
+ 300079,50.0,1,1,8.0,3,1,3,3.0,2,3.0,1,3.0,1,1,1,2.0,4,34237.0,2,3,0
82
+ 300080,57.0,0,1,7.0,2,1,3,4.0,1,3.0,1,3.0,0,3,0,1.0,2,24984.0,1,4,0
83
+ 300081,49.0,1,3,9.0,3,0,3,4.0,1,3.0,1,4.0,0,5,1,1.0,2,22729.0,1,3,0
84
+ 300082,38.0,1,1,26.0,2,1,3,4.0,1,3.0,1,5.0,0,1,0,1.0,2,24446.0,1,2,0
85
+ 300083,26.0,1,3,35.0,2,1,3,5.0,1,3.0,1,4.0,0,4,1,2.0,2,27317.0,2,1,0
86
+ 300084,31.0,0,1,26.0,2,1,3,3.0,3,3.0,0,4.0,0,3,1,0.0,3,24824.0,1,1,1
87
+ 300085,41.0,1,1,23.0,2,0,3,4.0,3,3.0,3,8.0,1,4,1,1.0,3,26623.0,2,2,0
88
+ 300086,43.0,0,1,6.0,2,0,2,3.0,1,3.0,1,5.0,0,1,1,1.0,2,20562.0,1,2,0
89
+ 300087,44.0,1,2,9.0,2,1,4,4.0,0,3.0,3,2.0,0,1,0,1.0,1,22217.0,1,2,0
90
+ 300088,24.0,1,1,6.0,3,1,3,3.0,0,3.0,1,3.0,1,3,0,2.0,1,17293.0,1,0,1
91
+ 300089,31.0,1,3,9.0,1,1,4,4.0,0,4.0,0,3.0,0,3,1,3.0,1,21154.0,1,1,0
92
+ 300090,25.0,1,3,17.0,3,0,4,4.0,1,3.0,1,3.0,1,2,0,3.0,2,22938.0,1,0,0
93
+ 300091,40.0,1,1,10.0,3,1,4,5.0,1,3.0,1,2.0,0,4,0,3.0,2,21747.0,1,2,0
94
+ 300092,31.0,1,3,13.0,3,1,3,3.0,1,3.0,1,5.0,0,2,0,0.0,2,22547.0,1,1,0
95
+ 300093,30.0,1,1,22.0,2,0,4,6.0,0,3.0,1,2.0,1,5,1,2.0,1,20846.0,1,1,0
96
+ 300094,38.0,1,1,31.0,2,0,2,4.0,3,4.0,1,4.0,0,3,0,1.0,3,27061.0,2,2,0
97
+ 300095,52.0,1,1,10.0,1,0,3,4.0,3,3.0,1,4.0,0,4,1,2.0,3,31794.0,2,3,0
98
+ 300096,44.0,0,1,30.0,2,1,2,3.0,0,3.0,1,4.0,1,5,0,1.0,1,18161.0,1,2,1
99
+ 300097,51.0,0,3,19.0,3,0,4,4.0,3,3.0,3,6.0,0,5,0,1.0,3,27886.0,2,3,0
100
+ 300098,35.0,0,3,9.0,3,0,4,4.0,0,3.0,0,8.0,0,5,1,3.0,1,20909.0,1,1,0
101
+ 300099,39.0,1,1,16.0,2,1,4,4.0,0,3.0,1,4.0,0,1,1,2.0,1,23449.0,1,2,0
102
+ 300100,40.0,1,1,6.0,2,1,2,3.0,0,4.0,0,4.0,0,1,1,1.0,1,17387.0,1,2,0
103
+ 300101,33.0,1,1,8.0,2,0,2,3.0,0,5.0,1,1.0,0,3,1,1.0,1,17707.0,1,1,1
104
+ 300102,37.0,1,1,9.0,2,0,4,4.0,0,3.0,1,6.0,0,5,1,1.0,1,21221.0,1,2,0
105
+ 300103,34.0,1,1,32.0,2,1,3,5.0,1,4.0,3,3.0,0,1,0,2.0,2,22998.0,1,1,0
106
+ 300104,31.0,1,1,17.0,3,1,3,3.0,1,5.0,0,2.0,1,2,0,2.0,2,21833.0,1,1,0
107
+ 300105,57.0,1,1,31.0,2,1,4,4.0,0,3.0,2,3.0,0,3,0,1.0,1,21265.0,1,4,1
108
+ 300106,34.0,1,3,19.0,3,1,2,3.0,3,3.0,1,2.0,0,1,1,1.0,3,23628.0,1,1,0
109
+ 300107,36.0,0,3,19.0,2,1,3,4.0,1,3.0,3,5.0,1,3,1,1.0,2,23259.0,1,2,1
110
+ 300108,31.0,0,1,26.0,2,1,3,3.0,3,3.0,1,4.0,0,3,1,0.0,3,24824.0,1,1,1
111
+ 300109,36.0,0,3,9.0,3,1,2,4.0,3,3.0,1,5.0,0,1,0,0.0,3,24699.0,1,2,0
112
+ 300110,21.0,1,1,11.0,1,1,3,4.0,0,5.0,3,3.0,0,3,1,2.0,1,21651.0,1,0,1
113
+ 300111,34.0,1,1,25.0,3,1,3,3.0,0,3.0,1,1.0,0,3,0,2.0,1,17661.0,1,1,0
114
+ 300112,28.0,0,1,7.0,1,1,3,5.0,1,5.0,1,7.0,0,3,1,1.0,2,22976.0,1,1,0
115
+ 300113,41.0,1,2,16.0,2,1,3,4.0,2,3.0,1,4.0,0,1,1,1.0,4,34141.0,2,2,0
116
+ 300114,37.0,0,3,18.0,1,0,4,4.0,3,3.0,1,2.0,0,5,0,3.0,3,28416.0,2,2,0
117
+ 300115,49.0,1,1,11.0,1,1,3,3.0,1,3.0,0,3.0,0,3,0,0.0,2,21651.0,1,3,0
118
+ 300116,41.0,1,3,8.0,2,0,3,3.0,4,5.0,0,1.0,0,5,1,1.0,0,31595.0,2,2,0
119
+ 300117,43.0,1,1,36.0,2,1,4,4.0,1,4.0,0,3.0,0,3,1,2.0,2,23112.0,1,2,0
120
+ 300118,35.0,1,1,16.0,3,0,3,5.0,3,4.0,3,3.0,0,2,1,2.0,3,27299.0,2,1,0
121
+ 300119,45.0,0,3,8.0,2,0,3,3.0,1,3.0,1,5.0,0,1,1,2.0,2,20154.0,1,2,0
122
+ 300120,34.0,1,1,17.0,3,1,3,6.0,0,3.0,1,2.0,0,5,0,1.0,1,22086.0,1,1,1
123
+ 300121,23.0,1,1,22.0,3,0,3,4.0,0,3.0,3,3.0,0,1,1,2.0,1,21549.0,1,0,0
124
+ 300122,32.0,1,1,9.0,2,1,4,4.0,0,3.0,1,3.0,0,5,0,3.0,1,22155.0,1,1,0
125
+ 300123,42.0,0,1,8.0,3,1,2,3.0,0,3.0,2,6.0,1,2,0,1.0,1,17515.0,1,2,0
126
+ 300124,27.0,0,2,28.0,2,0,2,4.0,0,4.0,1,2.0,0,1,1,0.0,1,17863.0,1,1,1
127
+ 300125,36.0,1,2,19.0,2,1,2,3.0,0,4.0,0,5.0,0,3,1,0.0,1,17143.0,1,2,0
128
+ 300126,48.0,0,3,9.0,3,1,3,4.0,1,4.0,1,2.0,0,1,0,2.0,2,23656.0,1,3,0
129
+ 300127,45.0,1,2,10.0,2,0,2,5.0,3,3.0,1,5.0,0,1,1,1.0,3,24756.0,1,2,0
130
+ 300128,34.0,0,1,10.0,2,1,4,4.0,0,5.0,3,3.0,1,5,1,1.0,1,22026.0,1,1,1
131
+ 300129,45.0,0,1,13.0,2,1,3,1.0,1,3.0,1,5.0,0,1,1,0.0,2,21434.0,1,2,0
132
+ 300130,37.0,1,1,6.0,2,0,3,3.0,1,4.0,1,7.0,0,1,1,2.0,2,21447.0,1,2,0
133
+ 300131,36.0,0,1,25.0,2,1,3,4.0,3,3.0,3,4.0,0,3,0,1.0,3,28040.0,2,2,0
134
+ 300132,29.0,1,1,14.0,2,1,3,5.0,0,5.0,1,2.0,1,3,0,1.0,1,17119.0,1,1,1
135
+ 300133,54.0,1,1,20.0,3,0,3,2.0,1,5.0,1,3.0,0,1,1,1.0,2,23128.0,1,3,0
136
+ 300134,30.0,1,1,8.0,3,0,2,4.0,1,3.0,3,6.0,1,2,1,1.0,2,21877.0,1,1,0
137
+ 300135,50.0,0,1,8.0,3,0,1,3.0,4,5.0,1,3.0,0,3,0,0.0,0,32856.0,2,3,0
138
+ 300136,35.0,1,1,6.0,2,0,2,1.0,0,3.0,2,4.0,0,3,0,0.0,1,17506.0,1,1,0
139
+ 300137,40.0,1,1,9.0,1,0,4,5.0,1,3.0,3,3.0,0,1,1,2.0,2,23231.0,1,2,0
140
+ 300138,28.0,0,1,30.0,1,1,3,4.0,3,5.0,3,2.0,0,1,1,1.0,3,23722.0,1,1,1
141
+ 300139,34.0,1,1,6.0,2,1,2,3.0,1,3.0,1,1.0,0,4,1,0.0,2,20484.0,1,1,0
142
+ 300140,39.0,1,1,17.0,3,0,3,6.0,3,3.0,1,5.0,0,1,1,2.0,3,31884.0,2,2,0
143
+ 300141,29.0,1,1,14.0,3,1,3,4.0,1,3.0,1,2.0,1,3,1,1.0,2,20056.0,1,1,0
144
+ 300142,47.0,1,1,14.0,3,1,4,4.0,3,3.0,1,8.0,0,1,1,2.0,3,29523.0,2,3,0
145
+ 300143,46.0,1,1,8.0,3,1,2,3.0,2,3.0,1,1.0,1,1,1,1.0,4,34328.0,2,3,0
146
+ 300144,27.0,1,1,11.0,2,0,2,3.0,0,4.0,2,2.0,1,3,0,1.0,1,17478.0,1,1,0
147
+ 300145,38.0,1,1,16.0,3,0,2,5.0,3,3.0,1,4.0,0,1,1,1.0,3,28206.0,2,2,0
148
+ 300146,27.0,1,1,32.0,2,1,3,6.0,0,3.0,2,3.0,0,2,1,2.0,1,20971.0,1,1,1
149
+ 300147,52.0,1,1,5.0,2,1,2,3.0,3,4.0,3,1.0,0,3,1,1.0,3,25445.0,2,3,0
150
+ 300148,20.0,1,1,17.0,3,0,3,4.0,0,5.0,2,2.0,1,3,0,1.0,1,17600.0,1,0,1
151
+ 300149,31.0,1,3,19.0,1,0,3,4.0,1,3.0,3,2.0,0,2,1,1.0,2,25255.0,2,1,0
152
+ 300150,39.0,0,1,6.0,2,1,2,3.0,2,3.0,1,2.0,1,3,0,1.0,4,34197.0,2,2,0
153
+ 300151,31.0,1,2,16.0,2,1,3,4.0,1,3.0,1,2.0,1,3,1,2.0,2,25025.0,2,1,0
154
+ 300152,24.0,1,1,23.0,2,0,3,3.0,0,4.0,1,2.0,0,1,1,2.0,1,17210.0,1,0,1
155
+ 300153,45.0,1,1,9.0,2,0,4,2.0,0,3.0,1,3.0,0,4,1,3.0,1,20689.0,1,2,0
156
+ 300154,35.0,0,1,9.0,2,1,4,4.0,1,3.0,3,4.0,0,4,1,2.0,2,22711.0,1,1,0
157
+ 300155,26.0,1,1,14.0,3,1,4,5.0,0,3.0,1,3.0,0,1,0,3.0,1,21567.0,1,1,0
158
+ 300156,29.0,0,1,13.0,2,1,3,5.0,0,3.0,1,3.0,1,4,1,2.0,1,21381.0,1,1,0
159
+ 300157,31.0,0,2,15.0,2,0,4,5.0,0,3.0,1,8.0,0,5,1,3.0,1,20858.0,1,1,1
160
+ 300158,33.0,1,3,9.0,3,1,3,4.0,1,4.0,0,2.0,1,1,0,2.0,2,22756.0,1,1,0
161
+ 300159,23.0,1,1,26.0,3,1,4,4.0,0,3.0,1,3.0,0,1,1,1.0,1,21001.0,1,0,0
162
+ 300160,25.0,1,3,32.0,3,0,2,3.0,1,3.0,2,2.0,0,4,0,0.0,2,21180.0,1,0,0
163
+ 300161,33.0,0,1,20.0,2,0,4,5.0,0,4.0,0,3.0,0,5,0,1.0,1,21421.0,1,1,0
164
+ 300162,59.0,1,1,30.0,3,0,4,4.0,3,3.0,0,3.0,0,3,1,1.0,3,28990.0,2,4,1
165
+ 300163,34.0,1,1,14.0,2,0,2,3.0,1,5.0,1,4.0,0,5,1,1.0,2,20121.0,1,1,0
166
+ 300164,53.0,1,3,8.0,2,0,3,4.0,4,3.0,1,3.0,0,3,0,0.0,0,30427.0,2,3,0
167
+ 300165,36.0,1,1,23.0,2,0,3,5.0,1,4.0,1,2.0,1,1,1,2.0,2,23466.0,1,2,0
168
+ 300166,38.0,1,1,17.0,2,1,4,2.0,0,3.0,3,5.0,0,4,1,3.0,1,23358.0,1,2,0
169
+ 300167,43.0,0,1,23.0,1,1,2,4.0,0,3.0,1,1.0,1,5,1,1.0,1,17437.0,1,2,1
170
+ 300168,52.0,1,1,10.0,2,0,1,3.0,4,3.0,0,3.0,0,5,1,0.0,0,31555.0,2,3,0
171
+ 300169,31.0,1,1,15.0,2,0,4,2.0,3,5.0,0,2.0,1,2,0,3.0,3,30094.0,2,1,0
172
+ 300170,26.0,1,3,34.0,3,1,3,3.0,1,4.0,0,2.0,0,3,1,0.0,2,21272.0,1,1,0
173
+ 300171,44.0,0,1,11.0,2,1,2,4.0,0,3.0,2,4.0,0,1,0,1.0,1,18162.0,1,2,0
174
+ 300172,52.0,1,1,17.0,2,0,2,3.0,1,3.0,1,1.0,0,1,1,0.0,2,18149.0,1,3,0
175
+ 300173,39.0,1,1,7.0,2,0,3,4.0,3,3.0,3,6.0,1,2,0,2.0,3,26539.0,2,2,0
176
+ 300174,28.0,0,1,16.0,3,1,3,4.0,0,4.0,1,8.0,0,3,0,1.0,1,20702.0,1,1,0
177
+ 300175,36.0,0,3,16.0,3,1,2,3.0,3,3.0,3,2.0,0,2,1,1.0,3,24980.0,1,2,0
178
+ 300176,52.0,0,1,31.0,3,0,2,4.0,4,3.0,0,4.0,0,5,0,1.0,0,28826.0,2,3,0
179
+ 300177,45.0,1,1,11.0,3,1,3,4.0,1,4.0,3,2.0,0,2,1,1.0,2,24611.0,1,2,0
180
+ 300178,48.0,1,3,35.0,3,0,3,3.0,3,3.0,1,4.0,0,4,0,1.0,3,27504.0,2,3,0
181
+ 300179,50.0,1,1,6.0,3,1,3,3.0,4,3.0,1,1.0,0,5,0,2.0,0,32399.0,2,3,0
182
+ 300180,33.0,1,3,14.0,2,1,4,5.0,1,3.0,0,3.0,0,3,1,3.0,2,24162.0,1,1,0
183
+ 300181,58.0,1,1,31.0,2,1,3,2.0,3,3.0,1,5.0,1,4,1,1.0,3,28117.0,2,4,0
184
+ 300182,47.0,1,3,22.0,3,1,3,6.0,1,3.0,1,8.0,1,1,0,2.0,2,22101.0,1,3,1
185
+ 300183,25.0,1,1,24.0,2,0,4,4.0,0,4.0,0,3.0,0,2,0,2.0,1,20888.0,1,0,1
186
+ 300184,25.0,1,3,7.0,1,0,4,4.0,0,4.0,3,3.0,1,4,0,1.0,1,21880.0,1,0,1
187
+ 300185,24.0,1,3,14.0,2,1,3,4.0,0,3.0,1,3.0,1,1,1,1.0,1,20953.0,1,0,1
188
+ 300186,39.0,1,3,17.0,3,1,4,5.0,3,3.0,1,2.0,1,3,1,2.0,3,27418.0,2,2,0
189
+ 300187,33.0,0,3,23.0,2,1,2,3.0,4,3.0,2,2.0,0,3,1,1.0,0,32444.0,2,1,0
190
+ 300188,38.0,1,1,7.0,3,0,3,5.0,0,5.0,1,4.0,0,4,0,2.0,1,22598.0,1,2,0
191
+ 300189,50.0,1,1,35.0,2,1,2,4.0,4,3.0,1,1.0,0,5,1,1.0,0,32046.0,2,3,0
192
+ 300190,36.0,1,3,10.0,2,1,4,4.0,3,3.0,1,8.0,0,5,0,2.0,3,26501.0,2,2,0
193
+ 300191,29.0,1,1,14.0,2,1,4,4.0,0,5.0,3,5.0,1,3,0,3.0,1,25352.0,2,1,1
194
+ 300192,52.0,1,3,9.0,3,1,2,4.0,4,5.0,0,2.0,0,5,1,0.0,0,31856.0,2,3,0
195
+ 300193,29.0,1,3,26.0,3,1,2,3.0,1,3.0,1,3.0,0,2,1,1.0,2,21931.0,1,1,0
196
+ 300194,34.0,1,1,11.0,3,0,3,5.0,0,4.0,0,8.0,0,4,0,1.0,1,21300.0,1,1,0
197
+ 300195,38.0,1,3,7.0,2,1,3,5.0,3,3.0,1,7.0,0,1,1,2.0,3,29287.0,2,2,1
198
+ 300196,38.0,1,1,7.0,2,1,3,5.0,1,3.0,1,3.0,0,5,1,2.0,2,24671.0,1,2,0
199
+ 300197,49.0,1,3,17.0,3,0,2,3.0,3,3.0,1,2.0,0,4,0,0.0,3,22654.0,1,3,1
200
+ 300198,27.0,0,3,7.0,3,1,3,5.0,1,5.0,3,3.0,0,3,0,1.0,2,22972.0,1,1,0
201
+ 300199,28.0,1,3,30.0,3,0,3,5.0,1,3.0,1,3.0,0,1,1,2.0,2,22218.0,1,1,0
202
+ 300200,55.0,1,3,24.0,2,0,2,3.0,4,4.0,2,4.0,0,1,1,0.0,0,31835.0,2,3,0
203
+ 300201,43.0,0,1,26.0,3,1,3,2.0,0,3.0,1,8.0,1,3,0,1.0,1,21437.0,1,2,1
204
+ 300202,46.0,0,3,11.0,3,1,3,3.0,1,3.0,2,5.0,1,5,1,1.0,2,20772.0,1,3,0
205
+ 300203,35.0,0,1,9.0,2,1,3,5.0,1,3.0,0,3.0,0,4,0,1.0,2,28225.0,2,1,0
206
+ 300204,27.0,1,1,30.0,2,0,3,4.0,0,3.0,1,3.0,0,3,1,2.0,1,21564.0,1,1,0
207
+ 300205,45.0,1,1,34.0,1,0,2,4.0,4,4.0,2,2.0,0,3,1,0.0,0,31704.0,2,2,0
208
+ 300206,36.0,1,1,9.0,2,1,3,5.0,3,4.0,1,4.0,0,4,1,1.0,3,28952.0,2,2,0
209
+ 300207,32.0,0,1,10.0,3,1,3,4.0,0,5.0,1,3.0,1,1,0,1.0,1,21743.0,1,1,0
210
+ 300208,40.0,1,3,8.0,2,0,3,3.0,2,3.0,1,1.0,0,3,1,0.0,4,33041.0,2,2,0
211
+ 300209,44.0,1,3,34.0,3,0,2,1.0,4,3.0,1,4.0,1,1,1,0.0,0,28320.0,2,2,0
212
+ 300210,31.0,1,3,8.0,2,1,2,3.0,0,3.0,1,1.0,0,4,1,0.0,1,18067.0,1,1,0
213
+ 300211,30.0,1,3,15.0,3,1,2,3.0,0,3.0,2,2.0,0,5,0,0.0,1,16081.0,1,1,1
214
+ 300212,28.0,1,1,6.0,1,1,2,3.0,0,5.0,2,3.0,0,4,0,0.0,1,17080.0,1,1,0
215
+ 300213,27.0,1,1,15.0,3,0,4,3.0,0,4.0,2,2.0,0,3,0,1.0,1,17279.0,1,1,0
216
+ 300214,41.0,1,1,15.0,2,1,3,3.0,0,5.0,1,3.0,0,1,0,0.0,1,17238.0,1,2,0
217
+ 300215,20.0,1,3,12.0,2,1,4,4.0,3,4.0,3,2.0,1,4,1,1.0,3,21672.0,1,0,1
218
+ 300216,37.0,1,3,10.0,3,0,3,4.0,1,4.0,3,5.0,1,4,0,2.0,2,27956.0,2,2,0
219
+ 300217,32.0,1,1,30.0,3,1,4,5.0,1,3.0,1,2.0,0,3,0,2.0,2,24260.0,1,1,0
220
+ 300218,34.0,1,1,21.0,3,1,3,4.0,0,3.0,1,7.0,1,1,1,2.0,1,21114.0,1,1,1
221
+ 300219,25.0,1,1,15.0,2,1,2,3.0,0,5.0,2,4.0,0,1,1,0.0,1,17096.0,1,0,1
222
+ 300220,35.0,0,1,31.0,2,0,3,3.0,0,4.0,1,2.0,1,3,0,0.0,1,17022.0,1,1,1
223
+ 300221,30.0,1,1,15.0,3,1,2,4.0,0,3.0,2,2.0,0,4,1,1.0,1,17206.0,1,1,0
224
+ 300222,27.0,1,1,11.0,1,1,2,4.0,3,3.0,1,2.0,1,3,1,1.0,3,27808.0,2,1,0
225
+ 300223,45.0,0,1,24.0,2,1,4,6.0,0,3.0,2,4.0,0,4,1,1.0,1,20968.0,1,2,0
226
+ 300224,44.0,1,1,16.0,2,1,2,3.0,1,3.0,1,3.0,1,3,0,1.0,2,21465.0,1,2,0
227
+ 300225,31.0,1,1,15.0,2,0,4,2.0,3,5.0,1,2.0,1,1,0,3.0,3,30094.0,2,1,0
228
+ 300226,41.0,1,3,29.0,3,1,4,5.0,1,3.0,0,4.0,1,3,1,2.0,2,25058.0,2,2,1
229
+ 300227,53.0,1,3,8.0,2,0,3,4.0,4,3.0,0,3.0,0,3,1,0.0,0,30427.0,2,3,0
230
+ 300228,36.0,0,3,17.0,1,0,3,3.0,3,3.0,0,1.0,0,5,0,0.0,3,24738.0,1,2,0
231
+ 300229,22.0,1,1,8.0,1,1,3,3.0,0,3.0,0,1.0,0,5,1,2.0,1,17523.0,1,0,0
232
+ 300230,52.0,1,1,9.0,3,1,2,4.0,3,3.0,1,3.0,1,1,1,0.0,3,22969.0,1,3,0
233
+ 300231,52.0,0,1,13.0,3,0,3,5.0,0,3.0,3,2.0,0,5,1,2.0,1,21516.0,1,3,0
234
+ 300232,34.0,0,1,10.0,2,0,3,4.0,0,3.0,0,3.0,1,5,1,2.0,1,21587.0,1,1,0
235
+ 300233,59.0,1,1,14.0,3,0,3,5.0,3,5.0,0,2.0,1,4,1,1.0,3,28686.0,2,4,1
236
+ 300234,33.0,1,1,13.0,3,1,2,3.0,3,3.0,0,1.0,0,4,0,0.0,3,26691.0,2,1,0
237
+ 300235,37.0,1,3,22.0,3,1,3,4.0,1,3.0,1,5.0,0,5,1,2.0,2,21334.0,1,2,0
238
+ 300236,38.0,1,1,35.0,3,1,3,3.0,1,5.0,0,1.0,1,3,0,1.0,2,21673.0,1,2,1
239
+ 300237,29.0,1,1,9.0,3,1,3,4.0,3,3.0,0,2.0,0,2,1,2.0,3,26935.0,2,1,0
240
+ 300238,52.0,1,1,11.0,2,1,3,4.0,0,3.0,0,2.0,1,2,1,2.0,1,21139.0,1,3,1
241
+ 300239,35.0,1,1,12.0,2,1,2,5.0,1,3.0,3,2.0,0,5,1,0.0,2,21646.0,1,1,0
242
+ 300240,38.0,0,3,28.0,3,0,3,4.0,0,3.0,0,7.0,0,2,1,2.0,1,21651.0,1,2,0
243
+ 300241,25.0,1,1,6.0,1,1,2,3.0,0,3.0,0,5.0,0,5,1,1.0,1,18229.0,1,0,0
244
+ 300242,39.0,0,1,14.0,2,1,3,2.0,0,3.0,1,3.0,0,3,0,1.0,1,21288.0,1,2,0
245
+ 300243,28.0,0,3,10.0,3,0,4,2.0,1,3.0,1,3.0,1,1,1,1.0,2,23325.0,1,1,0
246
+ 300244,42.0,1,1,16.0,2,1,4,4.0,0,5.0,1,3.0,0,5,1,2.0,1,20967.0,1,2,0
247
+ 300245,26.0,1,1,7.0,3,0,3,4.0,0,4.0,2,3.0,0,3,1,1.0,1,20774.0,1,1,0
248
+ 300246,36.0,1,1,22.0,2,0,2,1.0,0,5.0,2,2.0,0,1,1,0.0,1,17743.0,1,2,1
249
+ 300247,38.0,1,3,9.0,3,1,4,4.0,1,3.0,0,6.0,1,3,0,2.0,2,28280.0,2,2,0
250
+ 300248,32.0,1,1,33.0,2,1,3,4.0,0,3.0,1,3.0,0,3,1,2.0,1,21589.0,1,1,0
251
+ 300249,32.0,1,3,14.0,1,0,3,4.0,1,4.0,1,2.0,1,1,1,2.0,2,20228.0,1,1,0
252
+ 300250,57.0,1,3,35.0,3,1,2,4.0,4,3.0,1,4.0,0,3,0,0.0,0,29118.0,2,4,0
253
+ 300251,24.0,0,1,15.0,3,1,2,3.0,0,5.0,2,3.0,1,3,0,1.0,1,18172.0,1,0,1
254
+ 300252,34.0,0,3,29.0,3,1,4,4.0,1,4.0,0,2.0,0,2,0,2.0,2,24824.0,1,1,0
255
+ 300253,20.0,1,1,16.0,2,1,3,4.0,0,5.0,2,3.0,0,3,0,2.0,1,21230.0,1,0,0
256
+ 300254,31.0,0,1,30.0,1,0,1,3.0,1,3.0,2,3.0,0,1,1,0.0,2,20238.0,1,1,0
257
+ 300255,35.0,1,3,6.0,3,1,3,3.0,3,4.0,1,2.0,0,4,0,0.0,3,22295.0,1,1,0
258
+ 300256,50.0,1,1,16.0,1,1,3,4.0,3,3.0,3,7.0,0,5,1,1.0,3,25496.0,2,3,0
259
+ 300257,36.0,1,1,6.0,2,0,2,3.0,1,4.0,1,1.0,0,5,1,1.0,2,20228.0,1,2,0
260
+ 300258,31.0,1,3,13.0,1,1,3,1.0,1,3.0,1,5.0,0,1,1,1.0,2,21929.0,1,1,0
261
+ 300259,35.0,1,1,31.0,1,1,3,4.0,3,4.0,1,4.0,0,3,1,1.0,3,25903.0,2,1,0
262
+ 300260,43.0,1,1,9.0,3,0,3,5.0,0,5.0,1,2.0,1,4,1,1.0,1,21271.0,1,2,0
263
+ 300261,52.0,1,3,9.0,3,1,2,4.0,4,5.0,1,2.0,0,5,1,0.0,0,31856.0,2,3,0
264
+ 300262,40.0,1,1,13.0,3,1,4,4.0,0,5.0,0,2.0,1,2,1,2.0,1,21082.0,1,2,1
265
+ 300263,35.0,0,1,9.0,2,1,4,4.0,1,3.0,3,4.0,0,4,1,3.0,2,22711.0,1,1,0
266
+ 300264,33.0,1,1,31.0,3,1,2,4.0,0,4.0,2,5.0,1,4,1,0.0,1,17313.0,1,1,1
267
+ 300265,24.0,1,3,6.0,1,0,3,3.0,0,4.0,2,2.0,1,4,1,2.0,1,18202.0,1,0,1
268
+ 300266,35.0,1,1,6.0,2,0,2,1.0,0,3.0,2,4.0,0,3,1,1.0,1,17506.0,1,1,0
269
+ 300267,32.0,0,1,16.0,3,1,3,5.0,0,5.0,2,2.0,1,3,0,2.0,1,20999.0,1,1,1
270
+ 300268,38.0,1,1,15.0,2,0,3,3.0,0,3.0,2,2.0,0,1,1,2.0,1,17288.0,1,2,0
271
+ 300269,29.0,1,1,21.0,2,1,2,3.0,0,3.0,2,2.0,0,3,0,0.0,1,17340.0,1,1,0
272
+ 300270,38.0,1,1,6.0,2,0,2,3.0,0,5.0,2,4.0,0,1,0,1.0,1,17619.0,1,2,0
273
+ 300271,39.0,1,3,10.0,2,1,3,4.0,1,3.0,3,2.0,1,3,1,1.0,2,25539.0,2,2,0
274
+ 300272,49.0,1,1,14.0,2,0,2,3.0,3,4.0,1,5.0,0,4,0,1.0,3,22403.0,1,3,0
275
+ 300273,54.0,1,1,8.0,1,0,2,3.0,3,3.0,0,1.0,0,4,1,0.0,3,28549.0,2,3,0
276
+ 300274,28.0,1,1,9.0,3,0,3,3.0,3,4.0,1,1.0,0,4,0,0.0,3,22655.0,1,1,0
277
+ 300275,29.0,1,1,34.0,2,0,3,3.0,0,3.0,1,5.0,0,5,0,1.0,1,17514.0,1,1,0
278
+ 300276,31.0,1,3,19.0,3,1,3,4.0,1,5.0,1,6.0,1,1,1,0.0,2,17302.0,1,1,1
279
+ 300277,35.0,1,3,11.0,2,1,4,4.0,3,3.0,1,4.0,1,4,0,3.0,3,28391.0,2,1,0
280
+ 300278,47.0,0,3,12.0,3,1,4,4.0,1,3.0,3,6.0,1,5,1,2.0,2,24450.0,1,3,0
281
+ 300279,26.0,1,3,17.0,2,1,3,4.0,1,3.0,3,2.0,0,1,1,1.0,2,23628.0,1,1,0
282
+ 300280,30.0,1,1,15.0,3,1,4,5.0,1,3.0,1,3.0,1,3,1,2.0,2,23734.0,1,1,0
283
+ 300281,34.0,1,1,11.0,3,0,2,4.0,3,5.0,3,3.0,0,2,0,0.0,3,26631.0,2,1,0
284
+ 300282,44.0,1,1,19.0,2,1,3,5.0,4,4.0,1,3.0,0,3,1,2.0,0,33014.0,2,2,0
285
+ 300283,34.0,1,3,8.0,2,1,2,3.0,1,3.0,2,2.0,0,5,0,0.0,2,21274.0,1,1,0
286
+ 300284,37.0,1,1,8.0,0,1,3,4.0,0,3.0,2,7.0,1,3,0,0.0,1,17090.0,1,2,1
287
+ 300285,42.0,1,1,19.0,1,0,3,4.0,2,3.0,1,3.0,0,4,1,2.0,4,38223.0,3,2,1
288
+ 300286,46.0,1,1,27.0,3,1,4,6.0,3,5.0,1,4.0,1,3,0,1.0,3,29529.0,2,3,0
289
+ 300287,35.0,1,3,10.0,2,1,3,6.0,1,5.0,3,5.0,0,5,1,2.0,2,23437.0,1,1,0
290
+ 300288,20.0,0,1,17.0,3,0,4,5.0,0,4.0,2,3.0,1,5,0,3.0,1,20537.0,1,0,1
291
+ 300289,40.0,1,1,17.0,3,1,4,4.0,1,5.0,1,4.0,0,5,1,3.0,2,24055.0,1,2,0
292
+ 300290,32.0,1,3,14.0,1,0,3,4.0,1,4.0,0,2.0,1,2,1,0.0,2,20228.0,1,1,0
293
+ 300291,34.0,1,3,13.0,1,1,2,3.0,0,3.0,1,1.0,1,1,0,1.0,1,17308.0,1,1,0
294
+ 300292,35.0,0,1,26.0,3,0,3,4.0,1,4.0,1,6.0,0,3,1,1.0,2,23122.0,1,1,0
295
+ 300293,31.0,0,1,15.0,3,1,2,4.0,0,5.0,2,1.0,1,3,1,0.0,1,17321.0,1,1,1
296
+ 300294,27.0,1,1,17.0,2,1,3,3.0,0,5.0,0,1.0,0,5,1,2.0,1,17099.0,1,1,0
297
+ 300295,42.0,1,1,30.0,3,1,2,3.0,3,5.0,0,2.0,1,2,1,1.0,3,22406.0,1,2,0
298
+ 300296,30.0,1,1,28.0,2,0,3,2.0,3,5.0,1,3.0,0,5,1,2.0,3,28658.0,2,1,0
299
+ 300297,36.0,1,1,23.0,2,1,4,4.0,3,3.0,1,6.0,1,1,0,1.0,3,26310.0,2,2,0
300
+ 300298,37.0,1,3,9.0,2,1,2,3.0,3,3.0,3,3.0,0,3,0,1.0,3,22428.0,1,2,0
301
+ 300299,55.0,1,1,14.0,3,0,2,3.0,4,3.0,1,3.0,1,3,0,1.0,0,29756.0,2,3,0
302
+ 300300,29.0,1,1,9.0,3,1,3,6.0,0,3.0,1,7.0,1,3,1,2.0,1,22142.0,1,1,1
303
+ 300301,33.0,0,1,12.0,2,1,1,3.0,1,3.0,1,4.0,0,5,1,0.0,2,22725.0,1,1,0
304
+ 300302,32.0,0,3,14.0,3,0,2,3.0,3,3.0,3,2.0,0,4,1,1.0,3,23998.0,1,1,0
305
+ 300303,54.0,0,1,17.0,3,0,2,3.0,4,3.0,1,4.0,0,3,1,0.0,0,31032.0,2,3,0
306
+ 300304,45.0,1,1,31.0,2,0,3,4.0,1,3.0,1,1.0,0,4,0,0.0,2,20906.0,1,2,0
307
+ 300305,34.0,1,3,20.0,1,0,2,3.0,0,3.0,1,2.0,1,5,1,1.0,1,17579.0,1,1,0
308
+ 300306,29.0,1,3,16.0,2,1,3,3.0,0,3.0,2,2.0,0,4,1,0.0,1,17642.0,1,1,0
309
+ 300307,55.0,1,3,9.0,2,0,3,5.0,3,3.0,0,8.0,0,5,1,1.0,3,29364.0,2,3,0
310
+ 300308,34.0,1,1,20.0,2,0,3,4.0,0,3.0,3,5.0,0,3,1,1.0,1,22130.0,1,1,0
311
+ 300309,50.0,1,1,34.0,2,0,2,3.0,4,5.0,0,5.0,1,5,0,0.0,0,31880.0,2,3,0
312
+ 300310,41.0,1,1,7.0,2,1,3,4.0,0,3.0,1,2.0,0,1,0,1.0,1,21084.0,1,2,0
313
+ 300311,45.0,1,1,12.0,2,1,2,3.0,3,5.0,1,5.0,1,3,1,1.0,3,28245.0,2,2,0
314
+ 300312,38.0,0,1,32.0,3,0,4,4.0,1,3.0,0,5.0,1,3,1,2.0,2,23127.0,1,2,0
315
+ 300313,27.0,0,1,7.0,3,0,4,5.0,0,3.0,1,3.0,0,1,0,1.0,1,20685.0,1,1,0
316
+ 300314,44.0,1,1,13.0,3,0,4,5.0,1,3.0,3,3.0,1,4,1,2.0,2,22759.0,1,2,0
317
+ 300315,40.0,0,3,28.0,2,0,3,6.0,1,3.0,1,8.0,0,5,0,1.0,2,24414.0,1,2,0
318
+ 300316,45.0,1,1,22.0,3,0,4,4.0,3,3.0,0,3.0,0,3,0,2.0,3,26656.0,2,2,1
319
+ 300317,35.0,1,1,7.0,3,1,4,4.0,1,4.0,0,3.0,0,5,0,1.0,2,23003.0,1,1,0
320
+ 300318,30.0,1,1,13.0,3,1,2,4.0,0,4.0,1,2.0,0,5,0,0.0,1,17141.0,1,1,0
321
+ 300319,27.0,0,1,11.0,2,0,2,3.0,0,3.0,2,1.0,1,1,1,1.0,1,17379.0,1,1,0
322
+ 300320,34.0,1,3,15.0,2,1,3,4.0,1,5.0,1,4.0,0,5,1,1.0,2,25070.0,2,1,0
323
+ 300321,48.0,1,3,21.0,3,1,3,4.0,1,5.0,3,4.0,0,2,0,2.0,2,23638.0,1,3,0
324
+ 300322,30.0,1,3,9.0,3,1,4,5.0,1,4.0,0,4.0,0,4,0,2.0,2,25322.0,2,1,0
325
+ 300323,30.0,1,1,9.0,1,0,2,3.0,0,5.0,2,6.0,1,4,0,0.0,1,17657.0,1,1,1
326
+ 300324,20.0,1,3,28.0,2,1,3,5.0,0,4.0,2,3.0,1,1,1,2.0,1,20799.0,1,0,1
327
+ 300325,28.0,0,1,22.0,3,1,2,3.0,0,3.0,2,2.0,0,3,0,0.0,1,17144.0,1,1,0
328
+ 300326,34.0,0,3,14.0,2,0,2,4.0,1,4.0,0,2.0,0,4,1,1.0,2,22980.0,1,1,0
329
+ 300327,32.0,1,2,15.0,3,0,4,2.0,0,4.0,2,2.0,0,1,0,3.0,1,20787.0,1,1,0
330
+ 300328,31.0,1,3,14.0,3,1,3,4.0,0,4.0,3,2.0,0,1,0,1.0,1,21661.0,1,1,0
331
+ 300329,48.0,0,3,11.0,3,1,4,4.0,1,3.0,3,5.0,0,4,0,3.0,2,21654.0,1,3,0
332
+ 300330,41.0,1,1,18.0,1,0,2,3.0,2,3.0,1,2.0,0,4,1,1.0,4,34545.0,2,2,1
333
+ 300331,60.0,1,3,7.0,1,1,4,4.0,3,3.0,1,5.0,1,1,1,1.0,3,30582.0,2,4,0
334
+ 300332,33.0,0,3,12.0,2,1,3,4.0,1,4.0,1,3.0,0,3,1,2.0,2,25202.0,2,1,0
335
+ 300333,31.0,0,1,9.0,3,0,3,4.0,0,3.0,2,2.0,0,4,1,1.0,1,21242.0,1,1,0
336
+ 300334,37.0,1,1,11.0,3,1,3,3.0,1,3.0,1,1.0,0,3,0,0.0,2,21347.0,1,2,0
337
+ 300335,48.0,1,3,9.0,3,0,3,4.0,1,3.0,0,2.0,1,2,1,1.0,2,23215.0,1,3,0
338
+ 300336,32.0,0,1,10.0,3,1,4,4.0,3,3.0,1,2.0,0,4,1,1.0,3,32353.0,2,1,0
339
+ 300337,45.0,0,3,15.0,2,0,3,4.0,1,3.0,0,2.0,0,3,0,0.0,2,20593.0,1,2,0
340
+ 300338,39.0,1,1,6.0,3,0,3,3.0,0,3.0,1,1.0,0,3,1,0.0,1,17232.0,1,2,0
341
+ 300339,30.0,1,1,10.0,3,1,4,5.0,3,3.0,1,3.0,0,1,0,3.0,3,30613.0,2,1,0
342
+ 300340,33.0,1,1,14.0,2,1,2,1.0,0,5.0,1,7.0,0,3,1,1.0,1,18143.0,1,1,0
343
+ 300341,39.0,1,1,7.0,1,0,4,4.0,3,5.0,0,3.0,0,4,1,3.0,3,32260.0,2,2,0
344
+ 300342,41.0,1,3,15.0,2,1,3,3.0,3,3.0,1,4.0,1,1,0,1.0,3,23189.0,1,2,0
345
+ 300343,33.0,1,2,9.0,2,1,2,3.0,0,4.0,1,4.0,1,5,0,1.0,1,17277.0,1,1,0
346
+ 300344,55.0,1,2,26.0,3,1,3,4.0,3,4.0,0,4.0,0,3,1,1.0,3,29403.0,2,3,0
347
+ 300345,56.0,0,1,6.0,2,1,2,3.0,1,3.0,1,2.0,0,3,0,0.0,2,21306.0,1,4,0
348
+ 300346,38.0,1,1,6.0,1,0,3,3.0,3,5.0,0,2.0,0,4,1,2.0,3,28582.0,2,2,0
349
+ 300347,26.0,0,1,9.0,2,1,4,2.0,1,3.0,1,3.0,0,1,0,2.0,2,23884.0,1,1,0
350
+ 300348,36.0,1,3,14.0,2,0,3,4.0,1,3.0,1,3.0,1,4,1,2.0,2,23882.0,1,2,0
351
+ 300349,35.0,1,3,16.0,3,1,3,4.0,3,3.0,1,6.0,0,3,1,2.0,3,23168.0,1,1,1
352
+ 300350,41.0,0,3,9.0,3,1,4,4.0,1,4.0,0,7.0,0,4,1,3.0,2,23005.0,1,2,0
353
+ 300351,52.0,0,3,13.0,3,0,3,3.0,0,3.0,1,3.0,1,4,1,2.0,1,23446.0,1,3,1
354
+ 300352,30.0,1,1,6.0,2,1,2,4.0,1,3.0,1,2.0,1,1,1,1.0,2,20126.0,1,1,0
355
+ 300353,43.0,0,1,16.0,3,0,4,4.0,0,3.0,3,3.0,0,4,1,2.0,1,22351.0,1,2,0
356
+ 300354,36.0,1,3,9.0,3,0,4,4.0,0,3.0,1,3.0,0,1,1,3.0,1,20692.0,1,2,0
357
+ 300355,30.0,1,1,7.0,2,0,4,4.0,0,3.0,1,3.0,0,2,0,3.0,1,22438.0,1,1,0
358
+ 300356,24.0,1,1,33.0,2,1,3,4.0,0,3.0,1,3.0,0,1,0,2.0,1,21582.0,1,0,0
359
+ 300357,40.0,1,3,16.0,1,0,2,4.0,1,4.0,1,1.0,0,5,1,0.0,2,21852.0,1,2,0
360
+ 300358,21.0,0,1,13.0,2,0,4,5.0,0,3.0,3,3.0,1,1,0,1.0,1,21604.0,1,0,1
361
+ 300359,37.0,0,1,8.0,2,1,3,4.0,1,3.0,1,6.0,0,1,1,2.0,2,20163.0,1,2,0
362
+ 300360,37.0,1,1,7.0,1,0,4,6.0,3,5.0,1,4.0,1,2,1,3.0,3,28930.0,2,2,0
363
+ 300361,34.0,0,3,7.0,2,0,3,3.0,1,5.0,0,4.0,0,3,1,1.0,2,24054.0,1,1,0
364
+ 300362,50.0,0,3,6.0,2,0,3,3.0,1,3.0,1,1.0,0,1,0,1.0,2,21347.0,1,3,0
365
+ 300363,31.0,1,1,14.0,2,0,3,3.0,4,4.0,2,4.0,0,1,1,0.0,0,31422.0,2,1,0
366
+ 300364,29.0,1,1,15.0,2,0,3,5.0,0,4.0,2,3.0,0,4,0,2.0,1,20832.0,1,1,1
367
+ 300365,36.0,1,1,16.0,2,1,4,5.0,1,4.0,3,2.0,0,2,1,3.0,2,25218.0,2,2,0
368
+ 300366,31.0,1,1,17.0,2,1,2,3.0,0,3.0,0,4.0,1,3,1,1.0,1,17356.0,1,1,0
369
+ 300367,53.0,1,3,14.0,3,1,3,3.0,4,3.0,0,6.0,0,3,0,2.0,0,26836.0,2,3,0
370
+ 300368,37.0,1,3,9.0,3,1,4,5.0,3,3.0,1,3.0,0,1,1,2.0,3,26274.0,2,2,0
371
+ 300369,38.0,1,1,17.0,3,0,4,4.0,0,4.0,1,3.0,0,1,1,1.0,1,22614.0,1,2,0
372
+ 300370,35.0,1,1,13.0,2,1,3,4.0,0,3.0,1,2.0,0,3,1,0.0,1,17690.0,1,1,0
373
+ 300371,31.0,1,1,32.0,2,1,2,3.0,0,3.0,1,2.0,0,3,0,1.0,1,17911.0,1,1,0
374
+ 300372,38.0,1,1,6.0,2,0,2,3.0,3,3.0,3,5.0,1,1,0,1.0,3,22861.0,1,2,0
375
+ 300373,28.0,1,3,9.0,3,0,4,6.0,2,4.0,2,4.0,1,5,1,2.0,4,21195.0,1,1,1
376
+ 300374,30.0,0,3,28.0,2,0,3,3.0,3,5.0,1,1.0,0,1,1,1.0,3,23412.0,1,1,0
377
+ 300375,35.0,0,3,14.0,3,0,3,4.0,3,3.0,0,5.0,1,5,1,2.0,3,25377.0,2,1,0
378
+ 300376,50.0,1,1,14.0,2,1,3,5.0,3,3.0,2,2.0,0,2,1,2.0,3,29643.0,2,3,0
379
+ 300377,34.0,1,1,14.0,3,0,3,3.0,1,3.0,2,4.0,0,4,1,1.0,2,21142.0,1,1,0
380
+ 300378,31.0,1,1,6.0,3,1,2,3.0,0,4.0,2,2.0,0,3,1,0.0,1,17501.0,1,1,0
381
+ 300379,31.0,1,1,9.0,2,1,3,5.0,1,3.0,0,3.0,0,4,1,1.0,2,22830.0,1,1,0
382
+ 300380,28.0,1,3,17.0,3,0,4,5.0,1,3.0,0,3.0,1,3,1,3.0,2,24447.0,1,1,0
383
+ 300381,34.0,1,1,15.0,3,0,2,4.0,3,4.0,3,2.0,0,2,1,1.0,3,23621.0,1,1,0
384
+ 300382,43.0,1,1,20.0,2,1,3,3.0,4,5.0,0,7.0,0,5,1,0.0,0,32159.0,2,2,0
385
+ 300383,32.0,0,1,19.0,2,0,3,4.0,0,4.0,0,2.0,0,5,0,0.0,1,17743.0,1,1,0
386
+ 300384,37.0,1,1,16.0,3,1,3,5.0,1,4.0,1,4.0,1,4,1,1.0,2,27525.0,2,2,0
387
+ 300385,43.0,1,3,11.0,3,1,3,4.0,1,5.0,3,2.0,0,5,1,1.0,2,23833.0,1,2,0
388
+ 300386,31.0,0,3,19.0,2,1,4,5.0,0,5.0,1,3.0,0,5,1,3.0,1,20711.0,1,1,1
389
+ 300387,41.0,0,3,35.0,2,1,3,6.0,3,5.0,1,5.0,0,5,0,2.0,3,29610.0,2,2,0
390
+ 300388,42.0,1,1,7.0,2,1,4,4.0,0,3.0,1,5.0,0,1,0,1.0,1,21460.0,1,2,0
391
+ 300389,32.0,1,3,13.0,2,1,3,4.0,1,3.0,1,2.0,0,3,1,0.0,2,20484.0,1,1,0
392
+ 300390,42.0,1,3,10.0,3,1,2,3.0,1,5.0,2,1.0,0,5,1,0.0,2,20155.0,1,2,0
393
+ 300391,28.0,1,1,11.0,2,1,4,4.0,0,3.0,1,3.0,0,4,1,2.0,1,21195.0,1,1,0
394
+ 300392,28.0,0,3,7.0,3,1,4,4.0,1,4.0,0,2.0,1,2,0,3.0,2,25027.0,2,1,0
395
+ 300393,24.0,1,3,9.0,1,1,4,4.0,0,5.0,1,5.0,0,3,1,3.0,1,21000.0,1,0,0
396
+ 300394,40.0,1,3,13.0,3,1,3,2.0,3,3.0,1,4.0,0,4,1,2.0,3,26915.0,2,2,0
397
+ 300395,39.0,0,3,9.0,2,1,3,5.0,1,3.0,1,5.0,0,5,1,2.0,2,23927.0,1,2,0
398
+ 300396,31.0,1,3,12.0,3,0,2,5.0,1,3.0,1,3.0,0,2,0,1.0,2,24796.0,1,1,0
399
+ 300397,35.0,0,3,8.0,2,0,3,6.0,0,3.0,3,3.0,0,3,0,2.0,1,23122.0,1,1,1
400
+ 300398,45.0,0,1,31.0,3,0,2,3.0,2,4.0,2,4.0,0,4,1,1.0,4,33061.0,2,2,0
401
+ 300399,38.0,0,1,12.0,2,1,3,4.0,1,3.0,1,3.0,0,4,1,1.0,2,20321.0,1,2,0
402
+ 300400,34.0,0,3,23.0,2,0,3,4.0,1,3.0,1,3.0,1,1,0,1.0,2,24046.0,1,1,0
403
+ 300401,34.0,0,1,9.0,2,1,2,3.0,1,3.0,3,1.0,0,2,1,0.0,2,22756.0,1,1,0
404
+ 300402,41.0,1,1,20.0,2,1,2,3.0,0,3.0,1,5.0,0,4,1,1.0,1,17451.0,1,2,0
405
+ 300403,38.0,1,1,16.0,3,0,3,3.0,1,3.0,1,4.0,0,3,0,1.0,2,24824.0,1,2,0
406
+ 300404,32.0,0,1,17.0,3,0,3,4.0,3,3.0,1,6.0,0,1,1,2.0,3,29709.0,2,1,0
407
+ 300405,36.0,1,1,9.0,2,0,2,3.0,0,3.0,1,6.0,0,1,0,1.0,1,17835.0,1,2,0
408
+ 300406,35.0,1,1,13.0,3,1,3,4.0,0,5.0,3,4.0,0,4,0,1.0,1,21638.0,1,1,1
409
+ 300407,37.0,0,1,16.0,2,1,4,2.0,0,4.0,1,3.0,0,5,1,1.0,1,21488.0,1,2,0
410
+ 300408,46.0,1,3,8.0,3,0,3,3.0,4,5.0,1,1.0,0,1,1,1.0,0,32048.0,2,3,0
411
+ 300409,42.0,0,3,11.0,3,1,3,4.0,1,4.0,3,3.0,0,3,1,1.0,2,28033.0,2,2,1
412
+ 300410,46.0,1,1,9.0,2,0,3,5.0,1,3.0,1,3.0,0,4,1,2.0,2,24448.0,1,3,0
413
+ 300411,35.0,1,3,15.0,2,0,4,4.0,1,5.0,0,7.0,0,2,1,1.0,2,25178.0,2,1,0
414
+ 300412,43.0,0,1,12.0,2,1,4,4.0,0,3.0,1,6.0,0,3,0,2.0,1,20771.0,1,2,0
415
+ 300413,36.0,1,1,32.0,2,1,3,5.0,1,3.0,3,6.0,0,2,0,2.0,2,22359.0,1,2,0
416
+ 300414,25.0,1,3,19.0,3,1,2,3.0,0,3.0,0,2.0,0,3,1,0.0,1,17096.0,1,0,0
417
+ 300415,30.0,1,3,16.0,3,0,3,6.0,0,4.0,3,3.0,0,1,1,2.0,1,21438.0,1,1,1
418
+ 300416,37.0,0,3,10.0,3,1,3,5.0,3,3.0,1,6.0,0,1,0,1.0,3,28377.0,2,2,0
419
+ 300417,48.0,0,3,30.0,2,1,3,5.0,0,3.0,2,2.0,1,1,1,2.0,1,17559.0,1,3,1
420
+ 300418,30.0,1,1,28.0,2,0,3,3.0,3,5.0,1,3.0,0,5,1,2.0,3,28658.0,2,1,0
421
+ 300419,28.0,0,2,6.0,2,1,2,3.0,0,3.0,1,2.0,0,4,0,1.0,1,17706.0,1,1,0
422
+ 300420,38.0,1,2,6.0,2,1,2,1.0,0,3.0,0,2.0,0,4,1,0.0,1,17844.0,1,2,0
423
+ 300421,34.0,1,1,22.0,3,1,3,4.0,3,3.0,0,2.0,1,5,0,1.0,3,32288.0,2,1,1
424
+ 300422,46.0,1,2,31.0,3,1,3,4.0,0,4.0,2,3.0,0,4,0,1.0,1,20855.0,1,3,0
425
+ 300423,36.0,1,3,14.0,2,1,4,4.0,0,3.0,0,3.0,0,3,1,1.0,1,21082.0,1,2,0
426
+ 300424,35.0,1,3,33.0,2,1,2,3.0,1,3.0,2,2.0,1,5,0,0.0,2,20813.0,1,1,1
427
+ 300425,59.0,1,1,9.0,1,0,4,5.0,3,3.0,1,2.0,0,5,0,1.0,3,21050.0,1,4,1
428
+ 300426,33.0,0,1,6.0,3,1,2,4.0,0,3.0,1,2.0,0,3,0,0.0,1,17008.0,1,1,0
429
+ 300427,34.0,0,3,17.0,3,1,3,5.0,1,3.0,3,5.0,0,3,1,2.0,2,23360.0,1,1,0
430
+ 300428,33.0,0,1,7.0,2,1,4,4.0,0,3.0,1,2.0,0,5,0,1.0,1,20992.0,1,1,0
431
+ 300429,34.0,1,1,7.0,2,1,4,5.0,0,5.0,3,5.0,1,4,1,2.0,1,21477.0,1,1,0
432
+ 300430,30.0,1,3,14.0,2,1,3,3.0,3,3.0,1,6.0,0,3,1,0.0,3,22264.0,1,1,0
433
+ 300431,32.0,0,1,8.0,2,1,3,3.0,0,3.0,2,1.0,0,5,1,1.0,1,18068.0,1,1,0
434
+ 300432,27.0,1,1,24.0,3,1,4,6.0,0,3.0,1,3.0,0,3,0,3.0,1,20983.0,1,1,0
435
+ 300433,26.0,0,1,8.0,2,1,2,3.0,0,5.0,0,7.0,1,5,1,0.0,1,17042.0,1,1,1
436
+ 300434,23.0,1,1,15.0,3,1,2,3.0,0,5.0,0,2.0,0,3,0,1.0,1,17500.0,1,0,0
437
+ 300435,33.0,1,3,15.0,1,0,4,5.0,1,4.0,0,3.0,1,2,1,1.0,2,23906.0,1,1,0
438
+ 300436,42.0,1,1,8.0,2,1,3,4.0,1,3.0,3,4.0,0,2,0,1.0,2,21781.0,1,2,0
439
+ 300437,30.0,1,1,16.0,3,0,3,4.0,0,3.0,1,2.0,0,5,1,2.0,1,21652.0,1,1,0
440
+ 300438,37.0,1,3,7.0,2,0,4,4.0,1,3.0,3,8.0,0,1,1,2.0,2,25493.0,2,2,0
441
+ 300439,55.0,1,1,6.0,2,0,3,4.0,1,3.0,3,2.0,0,1,0,1.0,2,22458.0,1,3,0
442
+ 300440,27.0,0,1,7.0,3,0,4,5.0,0,3.0,1,3.0,0,2,1,1.0,1,20685.0,1,1,0
443
+ 300441,54.0,1,3,7.0,3,0,3,4.0,1,5.0,3,2.0,0,2,1,2.0,2,27059.0,2,3,0
444
+ 300442,28.0,1,1,6.0,2,1,3,4.0,0,3.0,1,2.0,0,4,0,1.0,1,16563.0,1,1,0
445
+ 300443,27.0,1,1,13.0,2,0,4,4.0,0,3.0,1,3.0,1,1,0,2.0,1,21337.0,1,1,0
446
+ 300444,41.0,0,1,23.0,3,1,3,5.0,1,3.0,3,8.0,0,5,1,2.0,2,23772.0,1,2,0
447
+ 300445,42.0,1,1,9.0,2,0,3,6.0,0,3.0,1,6.0,1,3,0,1.0,1,21456.0,1,2,1
448
+ 300446,26.0,1,3,12.0,3,1,3,5.0,1,3.0,3,3.0,1,3,0,2.0,2,24422.0,1,1,1
449
+ 300447,20.0,1,2,9.0,1,1,3,5.0,0,3.0,2,3.0,0,3,0,1.0,1,21242.0,1,0,1
450
+ 300448,39.0,0,1,36.0,2,0,3,4.0,1,3.0,2,3.0,0,3,1,1.0,2,21084.0,1,2,0
451
+ 300449,33.0,0,1,11.0,2,0,3,3.0,3,4.0,0,7.0,0,3,1,2.0,3,26878.0,2,1,0
452
+ 300450,41.0,1,1,9.0,3,1,4,4.0,0,3.0,1,4.0,0,1,0,1.0,1,21023.0,1,2,0
453
+ 300451,32.0,0,3,8.0,2,0,3,3.0,0,5.0,1,2.0,0,3,0,1.0,1,17827.0,1,1,0
454
+ 300452,30.0,0,1,17.0,2,0,3,5.0,0,3.0,3,3.0,0,4,1,1.0,1,25301.0,2,1,1
455
+ 300453,39.0,1,2,7.0,2,1,3,2.0,0,3.0,1,3.0,0,4,1,1.0,1,21522.0,1,2,0
456
+ 300454,30.0,1,2,15.0,2,1,2,3.0,1,3.0,1,1.0,1,3,1,1.0,2,21347.0,1,1,0
457
+ 300455,31.0,1,1,14.0,3,1,3,5.0,0,4.0,1,3.0,0,5,0,1.0,1,20819.0,1,1,0
458
+ 300456,21.0,1,1,24.0,2,0,3,3.0,0,3.0,2,2.0,0,3,1,2.0,1,17693.0,1,0,1
459
+ 300457,24.0,1,1,16.0,3,1,3,4.0,0,5.0,0,3.0,0,3,0,2.0,1,21178.0,1,0,0
460
+ 300458,27.0,1,1,13.0,3,0,2,4.0,1,5.0,3,1.0,0,3,1,0.0,2,21811.0,1,1,0
461
+ 300459,31.0,1,1,17.0,3,1,3,3.0,1,5.0,1,2.0,1,1,1,1.0,2,21833.0,1,1,0
462
+ 300460,43.0,0,1,16.0,2,0,2,3.0,0,3.0,2,1.0,0,5,0,1.0,1,17455.0,1,2,0
463
+ 300461,34.0,1,3,23.0,3,0,4,4.0,1,5.0,3,7.0,0,3,1,1.0,2,24002.0,1,1,1
464
+ 300462,59.0,1,2,12.0,3,1,2,3.0,0,3.0,0,1.0,0,4,1,0.0,1,17267.0,1,4,0
465
+ 300463,41.0,1,3,11.0,3,1,4,5.0,3,3.0,0,2.0,0,2,1,1.0,3,29533.0,2,2,0
466
+ 300464,27.0,1,1,13.0,2,0,4,4.0,0,3.0,0,3.0,1,2,0,1.0,1,21337.0,1,1,0
467
+ 300465,34.0,1,3,20.0,1,0,2,3.0,0,3.0,1,2.0,1,5,1,0.0,1,17579.0,1,1,0
468
+ 300466,37.0,1,3,16.0,2,0,2,4.0,1,3.0,1,3.0,1,4,0,0.0,2,21694.0,1,2,0
469
+ 300467,23.0,1,1,12.0,2,1,3,2.0,0,4.0,1,3.0,1,4,1,1.0,1,21006.0,1,0,0
470
+ 300468,48.0,1,1,9.0,3,0,4,4.0,1,3.0,1,7.0,0,1,0,1.0,2,23748.0,1,3,0
471
+ 300469,53.0,1,1,29.0,2,0,3,3.0,4,3.0,2,7.0,0,5,1,1.0,0,29275.0,2,3,0
472
+ 300470,36.0,1,1,12.0,2,1,2,3.0,0,3.0,0,1.0,0,5,1,1.0,1,18210.0,1,2,0
473
+ 300471,51.0,0,3,7.0,2,1,4,4.0,1,3.0,1,2.0,0,3,1,2.0,2,25406.0,2,3,1
474
+ 300472,54.0,1,1,9.0,1,0,4,5.0,3,3.0,1,2.0,0,5,1,3.0,3,28847.0,2,3,1
475
+ 300473,28.0,0,3,9.0,2,1,3,6.0,1,3.0,3,5.0,0,4,1,2.0,2,23749.0,1,1,0
476
+ 300474,32.0,1,1,6.0,2,1,3,3.0,0,5.0,2,2.0,0,1,0,1.0,1,17956.0,1,1,0
477
+ 300475,41.0,0,1,16.0,2,1,3,4.0,1,3.0,1,5.0,0,3,1,1.0,2,22653.0,1,2,0
478
+ 300476,33.0,0,1,9.0,2,1,3,3.0,0,5.0,2,2.0,1,5,1,2.0,1,18348.0,1,1,1
479
+ 300477,37.0,1,1,19.0,3,0,3,5.0,3,3.0,3,2.0,0,2,1,1.0,3,27536.0,2,2,0
480
+ 300478,32.0,0,3,9.0,2,0,3,5.0,0,3.0,3,2.0,0,5,0,2.0,1,21463.0,1,1,1
481
+ 300479,22.0,1,1,14.0,3,0,3,3.0,0,5.0,1,2.0,1,3,0,1.0,1,17398.0,1,0,1
482
+ 300480,27.0,1,1,23.0,1,1,2,3.0,0,4.0,1,1.0,1,4,0,0.0,1,18058.0,1,1,0
483
+ 300481,28.0,1,1,14.0,3,0,3,5.0,1,5.0,3,2.0,0,3,1,1.0,2,25489.0,2,1,0
484
+ 300482,50.0,1,1,10.0,2,1,3,3.0,2,4.0,1,4.0,0,5,1,0.0,4,34144.0,2,3,0
485
+ 300483,31.0,1,3,12.0,3,1,3,1.0,1,3.0,1,5.0,0,5,1,1.0,2,20460.0,1,1,0
486
+ 300484,28.0,1,1,15.0,3,1,3,3.0,0,3.0,1,2.0,0,1,1,0.0,1,17070.0,1,1,0
487
+ 300485,35.0,1,1,29.0,3,1,3,5.0,0,3.0,1,1.0,0,1,1,0.0,1,17705.0,1,1,0
488
+ 300486,28.0,1,3,15.0,3,0,3,4.0,1,4.0,0,3.0,0,2,0,1.0,2,24892.0,1,1,0
489
+ 300487,33.0,0,3,9.0,2,0,4,4.0,0,5.0,1,3.0,0,3,0,2.0,1,21505.0,1,1,0
490
+ 300488,46.0,0,3,33.0,2,0,4,4.0,1,5.0,1,4.0,0,1,0,3.0,2,22964.0,1,3,1
491
+ 300489,27.0,1,1,6.0,2,0,3,3.0,3,5.0,1,2.0,0,4,0,2.0,3,22412.0,1,1,0
492
+ 300490,55.0,0,1,8.0,2,0,3,4.0,3,3.0,1,2.0,0,5,0,2.0,3,29180.0,2,3,0
493
+ 300491,18.0,1,3,16.0,3,0,3,4.0,0,3.0,2,2.0,0,2,1,2.0,1,16200.0,1,0,0
494
+ 300492,58.0,1,1,29.0,2,1,2,3.0,0,3.0,1,2.0,0,3,1,1.0,1,17372.0,1,4,0
495
+ 300493,34.0,1,3,14.0,2,0,3,3.0,1,5.0,1,6.0,0,1,1,2.0,2,21500.0,1,1,0
496
+ 300494,54.0,1,1,14.0,2,1,3,2.0,4,3.0,1,5.0,0,1,0,2.0,0,33492.0,2,3,0
497
+ 300495,28.0,0,1,10.0,3,1,3,4.0,0,3.0,1,3.0,0,1,0,1.0,1,20384.0,1,1,0
498
+ 300496,27.0,1,1,12.0,3,0,3,4.0,0,3.0,1,1.0,0,2,1,1.0,1,17187.0,1,1,0
499
+ 300497,36.0,1,1,23.0,2,1,4,4.0,3,3.0,0,6.0,1,2,0,2.0,3,26310.0,2,2,0
500
+ 300498,43.0,0,1,28.0,3,0,3,4.0,1,3.0,1,4.0,0,1,0,1.0,2,23943.0,1,2,0
501
+ 300499,37.0,1,3,6.0,2,1,2,4.0,3,3.0,0,6.0,0,2,1,1.0,3,25609.0,2,2,1
502
+ 300500,31.0,0,3,8.0,2,0,2,4.0,0,3.0,2,1.0,0,5,0,1.0,1,17785.0,1,1,1
503
+ 300501,47.0,1,3,16.0,3,1,3,4.0,3,3.0,1,6.0,0,3,0,2.0,3,28774.0,2,3,1
504
+ 300502,47.0,0,1,22.0,3,1,3,1.0,1,3.0,1,2.0,1,1,1,0.0,2,20067.0,1,3,0
505
+ 300503,28.0,1,3,15.0,2,1,3,3.0,1,3.0,2,2.0,0,3,1,0.0,2,20253.0,1,1,0
506
+ 300504,24.0,1,1,15.0,3,1,4,5.0,0,3.0,3,3.0,1,4,1,3.0,1,22667.0,1,0,1
507
+ 300505,34.0,1,3,12.0,3,0,3,4.0,0,3.0,3,3.0,1,2,1,1.0,1,21529.0,1,1,1
508
+ 300506,31.0,1,1,8.0,2,1,2,3.0,0,3.0,1,1.0,1,4,1,1.0,1,17695.0,1,1,0
509
+ 300507,36.0,1,1,17.0,2,1,3,4.0,0,3.0,1,3.0,0,5,1,1.0,1,22595.0,1,2,0
510
+ 300508,32.0,0,1,36.0,3,1,4,5.0,0,4.0,3,2.0,0,3,0,3.0,1,22157.0,1,1,1
511
+ 300509,47.0,1,3,8.0,2,0,3,4.0,0,3.0,2,2.0,1,2,1,0.0,1,18294.0,1,3,0
512
+ 300510,33.0,1,1,6.0,3,0,3,1.0,4,3.0,1,5.0,0,1,1,0.0,0,31184.0,2,1,0
513
+ 300511,46.0,0,3,33.0,3,1,3,5.0,1,5.0,1,3.0,0,3,0,1.0,2,23063.0,1,3,0
514
+ 300512,32.0,0,1,30.0,2,1,3,3.0,1,3.0,0,2.0,0,4,1,0.0,2,20309.0,1,1,0
515
+ 300513,41.0,1,1,9.0,3,0,3,2.0,1,3.0,1,7.0,0,3,1,1.0,2,25055.0,2,2,0
516
+ 300514,35.0,0,3,6.0,3,0,3,3.0,3,3.0,3,2.0,0,5,1,0.0,3,23789.0,1,1,0
517
+ 300515,39.0,1,1,6.0,3,1,2,2.0,3,3.0,1,1.0,0,3,1,0.0,3,24613.0,1,2,0
518
+ 300516,46.0,0,1,24.0,3,0,2,3.0,3,3.0,0,6.0,0,3,1,0.0,3,25527.0,2,3,0
519
+ 300517,42.0,1,1,29.0,2,0,2,3.0,4,3.0,2,3.0,0,3,0,0.0,0,30992.0,2,2,0
520
+ 300518,33.0,0,1,7.0,2,1,4,4.0,0,3.0,1,2.0,0,5,1,1.0,1,20992.0,1,1,0
521
+ 300519,32.0,1,1,9.0,2,0,2,3.0,3,3.0,3,4.0,0,1,1,0.0,3,26159.0,2,1,0
522
+ 300520,41.0,1,1,16.0,2,1,3,4.0,0,5.0,2,5.0,0,1,1,2.0,1,20696.0,1,2,1
523
+ 300521,51.0,1,1,12.0,2,1,2,3.0,2,3.0,2,1.0,0,5,1,0.0,4,34537.0,2,3,0
524
+ 300522,56.0,1,3,20.0,3,1,3,2.0,4,3.0,2,8.0,1,3,1,2.0,0,32373.0,2,4,1
525
+ 300523,38.0,1,1,10.0,2,1,3,4.0,3,3.0,1,3.0,0,1,1,1.0,3,28112.0,2,2,0
526
+ 300524,37.0,1,1,9.0,2,0,4,4.0,1,4.0,1,6.0,1,4,0,1.0,2,25640.0,2,2,0
527
+ 300525,30.0,0,1,6.0,2,1,2,4.0,3,3.0,3,2.0,0,5,1,1.0,3,23474.0,1,1,0
528
+ 300526,40.0,1,1,7.0,2,0,4,5.0,4,3.0,0,3.0,0,3,0,2.0,0,31420.0,2,2,0
529
+ 300527,43.0,1,3,10.0,3,0,2,4.0,3,3.0,3,4.0,0,3,1,0.0,3,25231.0,2,2,0
530
+ 300528,54.0,1,1,13.0,3,0,3,3.0,1,3.0,1,5.0,0,3,1,1.0,2,21854.0,1,3,0
531
+ 300529,35.0,1,1,15.0,3,0,4,4.0,1,3.0,3,5.0,0,4,0,2.0,2,24820.0,1,1,0
532
+ 300530,42.0,0,3,7.0,3,0,4,4.0,1,5.0,1,2.0,0,3,0,2.0,2,22781.0,1,2,0
533
+ 300531,35.0,0,3,11.0,3,0,4,4.0,1,3.0,0,2.0,0,2,1,1.0,2,25216.0,2,1,0
534
+ 300532,38.0,1,3,15.0,3,1,3,4.0,0,4.0,1,1.0,0,4,0,2.0,1,17899.0,1,2,0
535
+ 300533,39.0,0,2,7.0,2,1,3,4.0,0,4.0,1,2.0,1,1,1,2.0,1,21669.0,1,2,0
536
+ 300534,34.0,1,3,34.0,3,0,3,4.0,1,3.0,1,2.0,0,5,1,0.0,2,21712.0,1,1,0
537
+ 300535,36.0,0,1,18.0,3,1,4,5.0,3,5.0,1,4.0,1,5,1,3.0,3,28562.0,2,2,0
538
+ 300536,50.0,1,3,15.0,1,1,3,5.0,4,4.0,1,8.0,0,4,1,2.0,0,31798.0,2,3,0
539
+ 300537,29.0,1,1,31.0,1,0,3,4.0,0,4.0,1,6.0,0,3,1,2.0,1,17546.0,1,1,1
540
+ 300538,40.0,1,1,12.0,2,0,3,3.0,4,3.0,3,1.0,0,5,1,2.0,0,28237.0,2,2,0
541
+ 300539,42.0,0,3,17.0,2,1,3,4.0,1,3.0,3,2.0,0,1,0,2.0,2,24908.0,1,2,0
542
+ 300540,39.0,1,3,10.0,2,1,3,4.0,1,3.0,3,2.0,1,3,1,2.0,2,25539.0,2,2,0
543
+ 300541,38.0,1,3,7.0,2,1,3,5.0,3,3.0,0,7.0,0,2,1,2.0,3,29287.0,2,2,1
544
+ 300542,59.0,0,1,7.0,2,1,3,6.0,1,3.0,1,4.0,1,1,1,2.0,2,24338.0,1,4,0
545
+ 300543,20.0,0,3,7.0,1,0,4,6.0,0,5.0,2,2.0,0,3,1,2.0,1,21003.0,1,0,1
546
+ 300544,37.0,0,3,27.0,3,0,2,3.0,0,3.0,1,6.0,0,1,1,0.0,1,17973.0,1,2,0
547
+ 300545,39.0,1,3,27.0,2,1,2,4.0,1,3.0,0,4.0,1,1,0,1.0,2,21120.0,1,2,0
548
+ 300546,36.0,1,3,11.0,1,1,3,4.0,3,5.0,3,2.0,1,4,1,2.0,3,28260.0,2,2,1
549
+ 300547,58.0,1,3,16.0,3,1,2,3.0,4,3.0,2,1.0,0,3,1,1.0,0,28872.0,2,4,0
550
+ 300548,29.0,0,3,26.0,1,0,2,3.0,0,3.0,1,2.0,0,3,0,1.0,1,17157.0,1,1,0
551
+ 300549,32.0,1,1,18.0,2,1,3,4.0,0,3.0,0,5.0,1,3,1,2.0,1,21034.0,1,1,0
552
+ 300550,31.0,1,3,11.0,3,0,4,5.0,1,4.0,1,3.0,1,3,1,2.0,2,23887.0,1,1,0
553
+ 300551,33.0,1,1,20.0,3,1,2,3.0,0,3.0,1,6.0,1,1,1,1.0,1,17436.0,1,1,1
554
+ 300552,26.0,0,1,6.0,3,0,3,4.0,0,3.0,1,2.0,0,1,0,0.0,1,17007.0,1,1,0
555
+ 300553,34.0,1,3,16.0,2,0,2,3.0,0,3.0,0,2.0,1,2,0,1.0,1,17220.0,1,1,0
556
+ 300554,20.0,1,1,10.0,3,0,4,4.0,0,4.0,2,3.0,0,3,1,1.0,1,20161.0,1,0,0
557
+ 300555,59.0,1,1,8.0,2,0,3,4.0,4,3.0,2,4.0,1,5,1,0.0,0,28726.0,2,4,0
558
+ 300556,34.0,1,1,6.0,2,0,2,4.0,0,4.0,0,6.0,0,1,1,1.0,1,18294.0,1,1,0
559
+ 300557,44.0,1,1,15.0,2,0,3,4.0,1,4.0,1,6.0,0,3,1,1.0,2,23443.0,1,2,0
560
+ 300558,42.0,1,1,19.0,1,0,3,4.0,2,3.0,0,3.0,0,4,1,1.0,4,38223.0,3,2,1
561
+ 300559,34.0,1,1,15.0,3,0,2,4.0,3,4.0,3,2.0,0,1,1,0.0,3,23621.0,1,1,0
562
+ 300560,42.0,1,1,15.0,2,1,3,4.0,2,3.0,2,1.0,0,1,1,1.0,4,34613.0,2,2,0
563
+ 300561,36.0,1,1,16.0,3,1,3,4.0,1,3.0,3,3.0,0,4,0,2.0,2,23776.0,1,2,0
564
+ 300562,36.0,1,2,14.0,2,1,3,4.0,0,5.0,0,1.0,0,2,1,2.0,1,17342.0,1,2,0
565
+ 300563,42.0,1,1,8.0,3,0,2,4.0,0,5.0,1,1.0,1,4,1,0.0,1,17593.0,1,2,0
566
+ 300564,22.0,0,1,22.0,3,1,3,1.0,0,3.0,1,2.0,1,3,0,2.0,1,17935.0,1,0,0
567
+ 300565,40.0,1,1,14.0,3,1,3,4.0,0,3.0,3,2.0,1,4,1,2.0,1,24094.0,1,2,1
568
+ 300566,40.0,0,3,11.0,2,1,2,4.0,3,5.0,0,6.0,1,5,0,1.0,3,25475.0,2,2,0
569
+ 300567,52.0,0,3,8.0,2,1,3,4.0,2,3.0,2,2.0,1,1,1,0.0,4,34068.0,2,3,0
570
+ 300568,60.0,1,3,7.0,1,1,4,4.0,3,3.0,0,5.0,1,2,0,2.0,3,30582.0,2,4,0
571
+ 300569,33.0,0,1,6.0,2,0,2,1.0,1,4.0,0,2.0,1,3,0,1.0,2,20488.0,1,1,0
572
+ 300570,35.0,1,1,10.0,2,1,3,3.0,0,3.0,1,2.0,0,4,1,1.0,1,16951.0,1,1,0
573
+ 300571,49.0,1,1,24.0,2,1,2,4.0,2,3.0,1,2.0,1,3,1,0.0,4,34502.0,2,3,0
574
+ 300572,32.0,1,1,8.0,1,1,2,4.0,1,5.0,2,5.0,0,4,0,1.0,2,17176.0,1,1,0
575
+ 300573,35.0,1,1,7.0,3,1,4,4.0,1,4.0,1,3.0,0,5,1,3.0,2,23003.0,1,1,0
576
+ 300574,28.0,1,1,11.0,2,1,3,2.0,1,4.0,1,3.0,1,4,1,1.0,2,24820.0,1,1,0
577
+ 300575,28.0,1,1,14.0,2,0,2,4.0,0,4.0,2,2.0,0,4,0,1.0,1,17154.0,1,1,1
578
+ 300576,26.0,1,1,12.0,2,0,3,3.0,0,3.0,0,2.0,1,2,0,0.0,1,17659.0,1,1,0
579
+ 300577,40.0,1,1,12.0,2,0,3,3.0,4,3.0,3,1.0,0,5,1,0.0,0,28237.0,2,2,0
580
+ 300578,39.0,1,1,36.0,3,1,4,4.0,1,5.0,0,2.0,1,3,0,2.0,2,25351.0,2,2,1
581
+ 300579,31.0,0,1,9.0,3,1,3,3.0,3,3.0,1,1.0,0,4,1,2.0,3,28675.0,2,1,0
582
+ 300580,28.0,1,1,24.0,1,1,3,4.0,0,4.0,1,2.0,1,4,0,1.0,1,21736.0,1,1,0
583
+ 300581,27.0,1,3,17.0,3,0,3,1.0,0,3.0,0,1.0,0,3,1,1.0,1,17534.0,1,1,0
584
+ 300582,30.0,0,1,31.0,2,1,4,5.0,0,3.0,2,3.0,1,3,1,3.0,1,21117.0,1,1,1
585
+ 300583,31.0,1,1,32.0,2,1,2,3.0,0,3.0,1,2.0,0,3,1,1.0,1,17911.0,1,1,0
586
+ 300584,32.0,1,1,18.0,3,1,4,4.0,1,5.0,1,3.0,1,1,1,2.0,2,25511.0,2,1,0
587
+ 300585,30.0,1,3,21.0,3,1,3,4.0,3,5.0,1,3.0,0,1,0,2.0,3,22140.0,1,1,0
588
+ 300586,42.0,1,3,11.0,3,1,2,3.0,2,3.0,1,7.0,0,4,0,1.0,4,33303.0,2,2,0
589
+ 300587,60.0,1,3,32.0,2,0,3,4.0,3,5.0,3,2.0,0,3,1,1.0,3,26315.0,2,4,0
590
+ 300588,56.0,1,1,29.0,2,1,3,3.0,4,4.0,0,5.0,1,4,1,2.0,0,28402.0,2,4,0
591
+ 300589,20.0,0,3,15.0,3,0,2,3.0,0,3.0,2,2.0,1,4,1,0.0,1,17323.0,1,0,1
592
+ 300590,35.0,1,1,7.0,2,1,3,5.0,0,3.0,0,3.0,1,2,0,1.0,1,22300.0,1,1,0
593
+ 300591,32.0,0,1,21.0,3,0,2,3.0,1,3.0,1,6.0,0,3,0,1.0,2,21667.0,1,1,0
594
+ 300592,37.0,1,1,33.0,2,1,4,4.0,1,3.0,1,8.0,0,3,1,1.0,2,24025.0,1,2,0
595
+ 300593,27.0,0,3,8.0,2,1,2,5.0,1,3.0,2,4.0,0,4,1,1.0,2,20071.0,1,1,0
596
+ 300594,43.0,0,1,36.0,2,0,4,4.0,1,3.0,1,4.0,0,3,1,2.0,2,23234.0,1,2,0
597
+ 300595,41.0,1,3,6.0,3,1,2,2.0,3,5.0,0,2.0,0,3,1,1.0,3,23392.0,1,2,0
598
+ 300596,34.0,1,3,32.0,3,1,3,5.0,3,4.0,3,4.0,1,5,1,1.0,3,27058.0,2,1,1
599
+ 300597,45.0,1,1,17.0,2,1,4,4.0,0,3.0,3,3.0,1,3,1,3.0,1,21614.0,1,2,1
600
+ 300598,45.0,1,1,34.0,1,1,3,3.0,0,3.0,1,5.0,0,3,1,2.0,1,17132.0,1,2,0
601
+ 300599,43.0,0,1,8.0,2,1,3,3.0,0,3.0,1,7.0,1,3,0,0.0,1,25231.0,2,2,1
602
+ 300600,34.0,1,1,8.0,3,1,3,1.0,0,3.0,1,1.0,1,1,0,1.0,1,17932.0,1,1,0
603
+ 300601,28.0,1,3,9.0,3,0,3,3.0,0,4.0,1,2.0,0,1,1,0.0,1,17856.0,1,1,0
604
+ 300602,55.0,1,1,6.0,3,1,2,3.0,2,5.0,2,1.0,1,2,1,0.0,4,34045.0,2,3,0
605
+ 300603,34.0,0,1,13.0,2,1,3,5.0,1,3.0,2,2.0,1,5,1,0.0,2,21074.0,1,1,1
606
+ 300604,51.0,1,1,13.0,3,1,2,4.0,1,3.0,0,3.0,0,3,1,1.0,2,21132.0,1,3,0
607
+ 300605,19.0,0,1,15.0,3,1,4,4.0,0,3.0,2,3.0,0,5,1,1.0,1,20582.0,1,0,1
608
+ 300606,39.0,1,3,9.0,2,0,3,4.0,1,5.0,1,5.0,0,4,0,2.0,2,25571.0,2,2,0
609
+ 300607,40.0,1,3,10.0,3,1,3,4.0,3,3.0,1,1.0,0,1,1,1.0,3,25855.0,2,2,0
610
+ 300608,49.0,1,1,27.0,3,1,3,4.0,0,3.0,0,6.0,0,2,0,1.0,1,20937.0,1,3,0
611
+ 300609,55.0,0,1,8.0,3,1,2,4.0,4,5.0,2,1.0,0,3,1,1.0,0,31756.0,2,3,0
612
+ 300610,48.0,1,1,21.0,3,0,3,3.0,3,3.0,1,2.0,0,3,0,0.0,3,33265.0,2,3,1
613
+ 300611,36.0,1,1,16.0,2,1,4,5.0,1,4.0,3,2.0,0,1,0,2.0,2,25218.0,2,2,0
614
+ 300612,41.0,0,1,11.0,2,1,3,4.0,0,5.0,1,7.0,0,3,1,0.0,1,17107.0,1,2,1
615
+ 300613,19.0,0,1,15.0,3,1,4,4.0,0,3.0,2,3.0,0,5,0,1.0,1,20582.0,1,0,1
616
+ 300614,33.0,1,1,9.0,1,1,3,5.0,1,5.0,2,6.0,0,4,0,2.0,2,20854.0,1,1,0
617
+ 300615,46.0,1,1,21.0,2,1,2,3.0,2,4.0,0,6.0,0,3,1,1.0,4,34081.0,2,3,0
618
+ 300616,45.0,0,1,7.0,3,1,3,4.0,0,4.0,1,3.0,1,3,1,2.0,1,21020.0,1,2,1
619
+ 300617,53.0,1,1,15.0,3,1,3,5.0,1,4.0,1,4.0,0,1,1,1.0,2,23619.0,1,3,1
620
+ 300618,30.0,1,1,32.0,1,0,4,5.0,0,4.0,1,7.0,0,3,1,3.0,1,21224.0,1,1,1
621
+ 300619,36.0,1,1,33.0,3,1,3,3.0,1,3.0,0,7.0,0,3,1,0.0,2,20237.0,1,2,0
622
+ 300620,39.0,1,3,10.0,2,0,2,4.0,1,3.0,0,5.0,0,5,1,0.0,2,20902.0,1,2,0
623
+ 300621,42.0,1,1,29.0,2,0,2,3.0,4,3.0,2,3.0,0,3,0,0.0,0,30992.0,2,2,0
624
+ 300622,27.0,1,1,23.0,3,1,3,4.0,0,4.0,1,4.0,1,2,1,2.0,1,21051.0,1,1,1
625
+ 300623,37.0,1,1,13.0,2,1,3,6.0,0,3.0,1,3.0,0,1,1,1.0,1,21419.0,1,2,0
626
+ 300624,37.0,1,1,12.0,2,0,3,5.0,0,5.0,0,2.0,1,2,1,1.0,1,98678.0,3,2,0
627
+ 300625,47.0,1,1,8.0,3,0,3,3.0,1,3.0,1,6.0,0,1,0,0.0,2,20070.0,1,3,0
628
+ 300626,56.0,1,3,7.0,2,1,4,4.0,3,3.0,0,5.0,0,2,0,2.0,3,28917.0,2,4,0
629
+ 300627,35.0,1,1,16.0,3,0,2,3.0,1,3.0,2,4.0,1,1,1,0.0,2,21142.0,1,1,0
630
+ 300628,30.0,0,1,17.0,2,0,4,4.0,0,4.0,1,2.0,0,5,0,1.0,1,21969.0,1,1,0
631
+ 300629,48.0,1,3,13.0,3,1,3,3.0,1,5.0,1,5.0,0,4,1,1.0,2,20486.0,1,3,0
632
+ 300630,18.0,1,1,9.0,3,1,2,3.0,0,3.0,2,2.0,0,4,1,0.0,1,16420.0,1,0,1
633
+ 300631,40.0,1,1,10.0,3,0,2,3.0,2,3.0,1,2.0,0,5,1,1.0,4,34033.0,2,2,0
634
+ 300632,38.0,1,3,6.0,2,0,2,4.0,1,3.0,3,5.0,0,1,0,1.0,2,23686.0,1,2,0
635
+ 300633,36.0,1,1,9.0,2,0,2,3.0,0,3.0,1,6.0,0,2,1,0.0,1,17835.0,1,2,0
636
+ 300634,30.0,1,1,7.0,1,1,4,5.0,0,5.0,2,8.0,0,3,0,3.0,1,21040.0,1,1,1
637
+ 300635,58.0,1,3,16.0,3,1,2,3.0,4,3.0,2,1.0,0,3,0,1.0,0,28872.0,2,4,0
638
+ 300636,36.0,0,1,24.0,2,1,3,3.0,1,3.0,3,3.0,0,3,0,1.0,2,22779.0,1,2,0
639
+ 300637,42.0,1,1,12.0,3,1,2,3.0,3,5.0,1,1.0,0,3,1,0.0,3,28348.0,2,2,0
640
+ 300638,40.0,1,1,7.0,3,1,3,2.0,3,3.0,1,2.0,0,3,1,1.0,3,28291.0,2,2,0
641
+ 300639,50.0,0,3,6.0,2,1,3,3.0,1,3.0,1,1.0,0,3,1,1.0,2,21728.0,1,3,1
642
+ 300640,46.0,1,1,19.0,2,1,2,3.0,1,4.0,2,7.0,0,4,1,0.0,2,20562.0,1,3,0
643
+ 300641,36.0,0,1,32.0,2,0,4,4.0,0,4.0,1,3.0,1,3,0,1.0,1,20700.0,1,2,1
644
+ 300642,33.0,0,1,6.0,2,0,2,1.0,1,4.0,1,2.0,1,3,1,0.0,2,20488.0,1,1,0
645
+ 300643,36.0,1,3,16.0,3,1,2,4.0,3,5.0,1,1.0,0,5,0,0.0,3,22094.0,1,2,1
646
+ 300644,34.0,1,2,10.0,2,1,3,4.0,0,4.0,1,5.0,1,5,0,2.0,1,20955.0,1,1,0
647
+ 300645,50.0,1,1,10.0,3,0,3,5.0,1,5.0,0,6.0,0,3,1,2.0,2,23467.0,1,3,0
648
+ 300646,47.0,1,3,16.0,3,1,4,5.0,3,3.0,3,3.0,0,5,1,3.0,3,28297.0,2,3,1
649
+ 300647,35.0,1,3,22.0,3,1,3,3.0,3,4.0,1,1.0,0,1,1,1.0,3,23020.0,1,1,0
650
+ 300648,59.0,0,2,8.0,2,0,2,4.0,2,3.0,1,1.0,0,1,0,1.0,4,33844.0,2,4,0
651
+ 300649,49.0,0,1,14.0,2,1,3,4.0,1,4.0,0,2.0,0,3,1,2.0,2,20130.0,1,3,0
652
+ 300650,45.0,1,2,30.0,3,1,2,3.0,0,4.0,2,2.0,0,4,0,1.0,1,17177.0,1,2,0
653
+ 300651,39.0,1,1,16.0,3,1,2,3.0,4,5.0,0,2.0,1,3,1,1.0,0,32068.0,2,2,0
654
+ 300652,46.0,0,1,7.0,3,1,3,4.0,1,3.0,3,6.0,0,1,1,2.0,2,24077.0,1,3,0
655
+ 300653,30.0,1,1,26.0,2,1,2,3.0,1,5.0,0,1.0,0,4,1,0.0,2,24957.0,1,1,0
656
+ 300654,42.0,0,2,8.0,3,1,3,1.0,1,5.0,1,1.0,0,1,1,1.0,2,21272.0,1,2,0
657
+ 300655,39.0,0,1,9.0,2,0,4,2.0,1,5.0,3,8.0,1,1,0,1.0,2,24658.0,1,2,0
658
+ 300656,35.0,0,1,9.0,2,1,2,4.0,0,3.0,1,2.0,0,1,1,1.0,1,16281.0,1,1,0
659
+ 300657,39.0,1,3,9.0,3,1,3,4.0,3,4.0,3,2.0,0,4,1,1.0,3,26029.0,2,2,0
660
+ 300658,39.0,0,1,17.0,3,1,4,4.0,0,3.0,0,2.0,0,5,0,3.0,1,21362.0,1,2,0
661
+ 300659,37.0,1,1,9.0,3,1,4,4.0,0,3.0,2,6.0,0,5,1,1.0,1,21197.0,1,2,0
662
+ 300660,51.0,0,1,29.0,3,1,3,6.0,4,3.0,2,3.0,1,1,1,2.0,0,33089.0,2,3,0
663
+ 300661,39.0,1,3,21.0,2,1,4,4.0,1,4.0,1,2.0,0,5,1,3.0,2,28602.0,2,2,0
664
+ 300662,22.0,1,1,7.0,1,0,4,5.0,0,4.0,2,3.0,1,5,0,3.0,1,20748.0,1,0,0
665
+ 300663,46.0,1,1,16.0,2,1,3,4.0,1,4.0,1,2.0,0,4,1,1.0,2,21026.0,1,3,0
666
+ 300664,35.0,1,1,7.0,2,1,3,5.0,0,3.0,1,3.0,1,1,1,2.0,1,22300.0,1,1,0
667
+ 300665,25.0,1,1,30.0,3,1,3,3.0,0,3.0,0,3.0,1,4,0,2.0,1,21403.0,1,0,0
668
+ 300666,45.0,0,1,6.0,3,1,2,3.0,1,3.0,2,5.0,0,1,1,1.0,2,20399.0,1,2,0
669
+ 300667,54.0,1,1,9.0,2,1,2,3.0,4,3.0,1,4.0,0,5,0,0.0,0,32779.0,2,3,0
670
+ 300668,49.0,1,1,10.0,3,1,2,4.0,2,3.0,1,3.0,0,3,0,1.0,4,33711.0,2,3,0
671
+ 300669,35.0,1,3,28.0,2,1,4,3.0,1,3.0,3,3.0,0,3,1,1.0,2,24015.0,1,1,0
672
+ 300670,26.0,1,3,15.0,2,1,3,2.0,1,4.0,1,2.0,0,4,1,1.0,2,23529.0,1,1,0
673
+ 300671,38.0,1,3,13.0,3,1,4,4.0,1,3.0,0,6.0,0,3,0,1.0,2,25180.0,2,2,0
674
+ 300672,36.0,1,2,15.0,1,1,4,4.0,0,3.0,3,3.0,0,5,0,2.0,1,23001.0,1,2,0
675
+ 300673,34.0,1,2,10.0,2,1,3,4.0,0,4.0,1,5.0,1,5,0,2.0,1,20955.0,1,1,0
676
+ 300674,43.0,0,1,15.0,3,1,3,3.0,1,3.0,1,4.0,1,3,1,0.0,2,20679.0,1,2,0
677
+ 300675,19.0,1,2,8.0,1,1,2,4.0,0,3.0,2,2.0,0,3,1,1.0,1,17564.0,1,0,1
678
+ 300676,45.0,1,3,35.0,3,0,3,2.0,4,3.0,0,5.0,1,2,1,2.0,0,31998.0,2,2,0
679
+ 300677,50.0,1,1,35.0,2,1,2,4.0,4,3.0,0,1.0,0,5,1,1.0,0,32046.0,2,3,0
680
+ 300678,31.0,0,3,19.0,2,1,4,5.0,0,5.0,0,3.0,0,5,1,1.0,1,20711.0,1,1,1
681
+ 300679,44.0,1,1,14.0,2,1,3,1.0,0,3.0,0,3.0,1,3,1,2.0,1,17818.0,1,2,0
682
+ 300680,31.0,1,3,36.0,1,1,3,4.0,3,4.0,1,5.0,0,4,0,2.0,3,27928.0,2,1,0
683
+ 300681,55.0,0,1,27.0,2,0,3,4.0,1,3.0,3,5.0,0,4,0,2.0,2,23547.0,1,3,0
684
+ 300682,27.0,0,2,24.0,2,0,3,4.0,0,3.0,1,2.0,1,5,0,2.0,1,21419.0,1,1,1
685
+ 300683,34.0,1,3,7.0,3,1,3,2.0,1,5.0,1,3.0,0,4,0,2.0,2,22715.0,1,1,0
686
+ 300684,45.0,1,1,8.0,2,0,2,4.0,1,3.0,1,2.0,0,4,1,1.0,2,20770.0,1,2,0
687
+ 300685,34.0,0,3,7.0,2,0,3,2.0,1,5.0,1,4.0,0,3,0,2.0,2,24054.0,1,1,0
688
+ 300686,38.0,1,1,7.0,1,0,3,4.0,3,3.0,3,6.0,0,5,1,2.0,3,26169.0,2,2,0
689
+ 300687,35.0,1,1,22.0,2,0,3,4.0,3,4.0,3,2.0,0,1,1,2.0,3,23606.0,1,1,0
690
+ 300688,35.0,1,1,17.0,2,1,3,4.0,0,4.0,1,3.0,0,1,1,2.0,1,20686.0,1,1,0
691
+ 300689,42.0,1,3,10.0,3,1,2,3.0,1,5.0,2,1.0,0,5,1,1.0,2,20155.0,1,2,0
692
+ 300690,25.0,1,1,30.0,3,1,3,2.0,0,3.0,1,3.0,1,4,0,1.0,1,21403.0,1,0,0
693
+ 300691,60.0,1,1,9.0,2,0,4,5.0,4,3.0,2,5.0,1,5,0,3.0,0,32404.0,2,4,0
694
+ 300692,29.0,1,1,9.0,2,1,4,4.0,0,3.0,3,4.0,0,4,0,2.0,1,22163.0,1,1,1
695
+ 300693,49.0,1,3,9.0,3,1,3,5.0,1,4.0,3,2.0,1,1,1,1.0,2,26576.0,2,3,1
696
+ 300694,36.0,1,3,15.0,2,0,4,4.0,0,3.0,1,3.0,0,3,1,3.0,1,21250.0,1,2,0
697
+ 300695,32.0,1,3,14.0,3,1,4,4.0,1,3.0,1,6.0,0,1,0,1.0,2,26225.0,2,1,0
698
+ 300696,44.0,1,1,10.0,2,1,3,1.0,2,5.0,1,2.0,0,5,1,2.0,4,34190.0,2,2,0
699
+ 300697,35.0,1,2,32.0,2,0,2,3.0,3,3.0,3,2.0,1,1,1,0.0,3,23837.0,1,1,0
700
+ 300698,42.0,1,1,16.0,2,1,4,4.0,0,5.0,0,4.0,0,2,0,3.0,1,20916.0,1,2,0
701
+ 300699,40.0,1,1,7.0,3,0,4,4.0,0,3.0,1,2.0,0,3,0,2.0,1,20910.0,1,2,0
702
+ 300700,36.0,0,3,6.0,3,0,2,3.0,1,3.0,3,5.0,0,1,1,1.0,2,21653.0,1,2,0
703
+ 300701,23.0,1,1,15.0,2,1,4,6.0,0,5.0,0,3.0,0,2,1,1.0,1,21129.0,1,0,0
704
+ 300702,27.0,0,1,13.0,2,1,4,2.0,0,3.0,1,2.0,0,4,1,2.0,1,21222.0,1,1,0
705
+ 300703,37.0,0,1,16.0,3,1,3,3.0,3,3.0,1,7.0,0,3,0,2.0,3,25048.0,2,2,1
706
+ 300704,40.0,1,1,31.0,3,1,3,4.0,0,4.0,1,3.0,1,1,0,1.0,1,22582.0,1,2,1
707
+ 300705,38.0,1,1,35.0,3,1,3,3.0,1,5.0,1,1.0,1,3,1,2.0,2,21673.0,1,2,1
708
+ 300706,40.0,1,3,9.0,2,1,3,2.0,3,3.0,3,2.0,0,2,1,2.0,3,26558.0,2,2,0
709
+ 300707,34.0,0,1,36.0,3,0,3,5.0,1,3.0,3,3.0,0,5,1,1.0,2,23186.0,1,1,1
710
+ 300708,35.0,0,1,23.0,2,0,4,5.0,0,3.0,2,3.0,0,5,1,3.0,1,21231.0,1,1,0
711
+ 300709,45.0,1,1,11.0,3,1,3,4.0,1,4.0,3,2.0,0,1,1,2.0,2,24611.0,1,2,0
712
+ 300710,41.0,1,1,9.0,3,0,3,5.0,0,3.0,2,2.0,1,3,0,1.0,1,21020.0,1,2,0
713
+ 300711,30.0,0,1,7.0,2,1,4,6.0,0,3.0,1,3.0,0,1,0,3.0,1,21398.0,1,1,0
714
+ 300712,22.0,1,1,8.0,1,1,3,3.0,0,3.0,1,1.0,0,5,1,0.0,1,17523.0,1,0,0
715
+ 300713,51.0,0,3,7.0,2,0,4,4.0,1,3.0,0,2.0,0,2,1,2.0,2,25025.0,2,3,0
716
+ 300714,34.0,1,3,16.0,3,0,4,4.0,1,5.0,3,2.0,1,3,0,1.0,2,26902.0,2,1,1
717
+ 300715,44.0,0,1,14.0,3,1,3,2.0,0,3.0,1,6.0,0,4,1,1.0,1,20767.0,1,2,0
718
+ 300716,29.0,1,1,26.0,3,1,4,5.0,0,5.0,0,3.0,0,3,1,3.0,1,21874.0,1,1,0
719
+ 300717,44.0,0,1,17.0,2,0,3,4.0,0,3.0,2,2.0,0,5,0,2.0,1,21133.0,1,2,0
720
+ 300718,24.0,1,1,11.0,3,1,3,3.0,0,5.0,0,4.0,0,4,0,2.0,1,21497.0,1,0,0
721
+ 300719,40.0,1,1,13.0,2,1,3,3.0,0,5.0,2,4.0,1,3,0,1.0,1,17166.0,1,2,1
722
+ 300720,26.0,1,2,26.0,3,0,3,3.0,0,4.0,1,1.0,1,3,0,1.0,1,17148.0,1,1,1
723
+ 300721,35.0,1,3,28.0,2,1,4,2.0,1,3.0,3,3.0,0,3,0,1.0,2,24015.0,1,1,0
724
+ 300722,31.0,1,3,13.0,2,1,2,4.0,0,3.0,0,4.0,0,4,1,1.0,1,17329.0,1,1,0
725
+ 300723,41.0,0,1,16.0,3,0,3,4.0,3,3.0,2,2.0,0,4,1,2.0,3,32177.0,2,2,0
726
+ 300724,45.0,0,1,12.0,2,1,3,5.0,0,3.0,3,5.0,0,1,0,2.0,1,21840.0,1,2,0
727
+ 300725,22.0,1,1,12.0,3,1,4,4.0,0,3.0,3,3.0,0,1,1,2.0,1,21795.0,1,0,0
728
+ 300726,47.0,1,1,8.0,3,0,3,3.0,1,3.0,1,6.0,0,2,0,1.0,2,20070.0,1,3,0
729
+ 300727,32.0,1,1,7.0,3,1,3,4.0,0,4.0,2,3.0,0,3,1,1.0,1,21179.0,1,1,0
730
+ 300728,35.0,0,3,14.0,3,0,3,4.0,3,3.0,1,5.0,1,5,1,2.0,3,25377.0,2,1,0
731
+ 300729,39.0,1,1,9.0,2,1,3,4.0,0,3.0,3,7.0,1,1,0,1.0,1,22622.0,1,2,0
732
+ 300730,54.0,1,3,9.0,3,0,2,3.0,1,5.0,1,3.0,0,4,1,0.0,2,20940.0,1,3,0
733
+ 300731,27.0,1,1,8.0,1,1,2,3.0,0,4.0,1,2.0,0,4,1,1.0,1,17226.0,1,1,0
734
+ 300732,51.0,1,1,35.0,3,1,4,3.0,0,3.0,0,3.0,1,2,1,3.0,1,21899.0,1,3,0
735
+ 300733,48.0,1,1,10.0,2,1,3,4.0,3,3.0,3,1.0,0,5,1,0.0,3,25999.0,2,3,0
736
+ 300734,38.0,1,1,10.0,2,0,3,4.0,1,4.0,3,5.0,0,4,1,1.0,2,22785.0,1,2,0
737
+ 300735,28.0,1,1,14.0,3,0,3,5.0,1,5.0,3,2.0,0,3,1,1.0,2,25489.0,2,1,0
738
+ 300736,32.0,1,3,27.0,2,0,4,6.0,1,3.0,0,5.0,1,3,1,1.0,2,23237.0,1,1,1
739
+ 300737,47.0,1,1,9.0,1,1,3,4.0,1,3.0,1,4.0,0,2,1,1.0,2,26057.0,2,3,0
740
+ 300738,58.0,0,3,8.0,3,1,2,3.0,4,4.0,1,5.0,0,4,1,0.0,0,17705.0,1,4,0
741
+ 300739,28.0,0,3,6.0,3,1,3,4.0,1,3.0,0,2.0,0,3,0,2.0,2,23020.0,1,1,0
742
+ 300740,46.0,1,3,16.0,3,1,4,4.0,3,5.0,1,6.0,1,1,0,1.0,3,29439.0,2,3,0
743
+ 300741,38.0,1,1,17.0,2,0,3,4.0,0,5.0,1,2.0,1,3,1,1.0,1,21460.0,1,2,0
744
+ 300742,29.0,0,3,26.0,1,0,2,3.0,0,3.0,0,2.0,0,3,0,1.0,1,17157.0,1,1,0
745
+ 300743,36.0,1,3,24.0,2,1,4,4.0,1,5.0,0,5.0,1,3,1,2.0,2,27644.0,2,2,0
746
+ 300744,31.0,1,1,27.0,2,1,3,4.0,1,5.0,1,2.0,0,4,0,2.0,2,28635.0,2,1,0
747
+ 300745,28.0,0,1,12.0,2,1,2,4.0,0,3.0,1,2.0,1,4,1,0.0,1,17703.0,1,1,0
748
+ 300746,34.0,1,3,12.0,3,0,3,4.0,0,3.0,3,3.0,1,1,0,2.0,1,21529.0,1,1,1
749
+ 300747,42.0,1,1,14.0,3,0,3,4.0,1,3.0,3,8.0,0,3,1,1.0,2,23681.0,1,2,0
750
+ 300748,35.0,1,1,31.0,1,1,3,4.0,3,4.0,0,4.0,0,3,1,1.0,3,25903.0,2,1,0
751
+ 300749,34.0,0,1,10.0,2,0,3,4.0,0,3.0,1,3.0,1,1,1,2.0,1,21587.0,1,1,0
752
+ 300750,55.0,0,3,8.0,2,0,2,4.0,0,3.0,2,1.0,0,5,0,0.0,1,28577.0,2,3,1
753
+ 300751,50.0,1,1,7.0,1,0,3,4.0,0,5.0,0,4.0,0,4,1,1.0,1,22258.0,1,3,0
754
+ 300752,46.0,1,1,36.0,1,1,3,4.0,3,3.0,0,6.0,1,5,1,1.0,3,28058.0,2,3,0
755
+ 300753,33.0,1,1,14.0,2,1,4,4.0,1,3.0,0,3.0,0,3,1,2.0,2,23561.0,1,1,1
756
+ 300754,30.0,0,3,18.0,2,1,3,4.0,0,5.0,0,2.0,0,5,1,0.0,1,17033.0,1,1,1
757
+ 300755,31.0,1,1,9.0,3,1,3,5.0,0,3.0,3,2.0,0,4,0,1.0,1,21398.0,1,1,0
758
+ 300756,37.0,1,1,13.0,3,1,3,4.0,1,4.0,1,8.0,0,4,0,2.0,2,23619.0,1,2,0
759
+ 300757,35.0,1,1,13.0,2,0,3,4.0,1,3.0,3,3.0,0,3,0,1.0,2,23487.0,1,1,0
760
+ 300758,27.0,0,2,24.0,2,0,3,4.0,0,3.0,1,2.0,1,5,0,2.0,1,21419.0,1,1,1
761
+ 300759,31.0,1,1,28.0,3,1,3,3.0,1,3.0,0,2.0,1,5,1,0.0,2,21179.0,1,1,1
762
+ 300760,36.0,1,1,15.0,3,1,2,4.0,1,4.0,1,3.0,1,4,1,0.0,2,23847.0,1,2,0
763
+ 300761,50.0,0,1,6.0,2,0,3,3.0,2,4.0,0,4.0,1,2,0,2.0,4,33172.0,2,3,0
764
+ 300762,37.0,1,1,9.0,2,0,3,4.0,1,4.0,3,2.0,1,3,1,1.0,2,24088.0,1,2,0
765
+ 300763,45.0,1,1,8.0,2,0,3,4.0,0,3.0,2,2.0,0,3,1,0.0,1,17274.0,1,2,0
766
+ 300764,32.0,1,1,15.0,2,0,4,4.0,1,3.0,3,3.0,0,5,1,3.0,2,23102.0,1,1,0
767
+ 300765,37.0,1,1,21.0,2,1,4,4.0,1,3.0,1,2.0,1,5,1,1.0,2,25264.0,2,2,0
768
+ 300766,32.0,0,3,14.0,3,0,2,3.0,3,3.0,3,2.0,0,4,1,1.0,3,23998.0,1,1,0
769
+ 300767,33.0,0,1,17.0,2,1,3,4.0,0,3.0,1,8.0,0,1,0,1.0,1,22111.0,1,1,0
770
+ 300768,41.0,1,1,26.0,3,1,2,4.0,1,3.0,1,2.0,1,1,1,1.0,2,21419.0,1,2,0
771
+ 300769,30.0,0,3,9.0,2,1,4,4.0,1,3.0,1,3.0,0,1,1,2.0,2,23327.0,1,1,0
772
+ 300770,19.0,1,3,28.0,3,1,2,3.0,0,3.0,2,2.0,1,2,0,1.0,1,16675.0,1,0,1
773
+ 300771,32.0,1,3,9.0,2,1,3,4.0,0,3.0,1,2.0,0,4,1,1.0,1,21745.0,1,1,0
774
+ 300772,31.0,1,3,11.0,1,1,2,3.0,1,3.0,1,2.0,0,5,0,1.0,2,23346.0,1,1,0
775
+ 300773,26.0,1,1,7.0,1,1,3,4.0,0,3.0,0,6.0,0,5,1,2.0,1,21907.0,1,1,0
776
+ 300774,29.0,1,1,16.0,3,0,4,4.0,0,3.0,1,7.0,0,3,0,1.0,1,21055.0,1,1,0
777
+ 300775,36.0,0,1,12.0,2,1,3,1.0,1,5.0,1,4.0,1,4,1,1.0,2,20562.0,1,2,0
778
+ 300776,47.0,1,1,25.0,3,0,3,4.0,1,3.0,1,4.0,0,5,1,2.0,2,23488.0,1,3,0
779
+ 300777,35.0,1,1,17.0,3,1,3,4.0,1,5.0,3,3.0,0,4,0,1.0,2,24803.0,1,1,1
780
+ 300778,28.0,1,1,22.0,3,1,3,1.0,1,5.0,2,1.0,0,5,0,1.0,2,20661.0,1,1,0
781
+ 300779,32.0,1,3,14.0,3,1,2,1.0,1,3.0,0,2.0,0,5,0,0.0,2,21209.0,1,1,0
782
+ 300780,26.0,1,3,34.0,3,1,3,3.0,1,4.0,1,2.0,0,3,0,0.0,2,21272.0,1,1,0
783
+ 300781,37.0,1,3,10.0,2,1,3,5.0,3,3.0,1,3.0,1,1,1,1.0,3,29003.0,2,2,1
784
+ 300782,30.0,1,1,16.0,2,1,4,2.0,0,3.0,1,8.0,0,5,1,1.0,1,21129.0,1,1,0
785
+ 300783,19.0,1,3,28.0,3,1,2,3.0,0,3.0,2,2.0,1,1,1,0.0,1,16675.0,1,0,1
786
+ 300784,46.0,1,1,17.0,2,1,4,4.0,0,3.0,1,5.0,0,5,0,3.0,1,21332.0,1,3,0
787
+ 300785,34.0,1,3,21.0,3,0,3,3.0,1,5.0,2,2.0,0,1,1,2.0,2,21125.0,1,1,0
788
+ 300786,50.0,1,3,6.0,3,0,3,3.0,2,3.0,1,4.0,0,2,1,1.0,4,34517.0,2,3,0
789
+ 300787,54.0,1,1,13.0,2,1,3,4.0,1,3.0,2,4.0,0,5,1,2.0,2,21128.0,1,3,0
790
+ 300788,32.0,0,1,13.0,2,1,3,2.0,0,4.0,0,2.0,0,2,0,1.0,1,17794.0,1,1,0
791
+ 300789,46.0,1,1,27.0,3,0,3,3.0,1,4.0,1,5.0,0,3,1,2.0,2,23926.0,1,3,1
792
+ 300790,35.0,1,1,14.0,2,1,2,1.0,0,3.0,1,2.0,0,5,1,1.0,1,17269.0,1,1,0
793
+ 300791,38.0,1,1,7.0,2,0,3,5.0,1,3.0,0,3.0,0,2,1,2.0,2,25152.0,2,2,0
794
+ 300792,29.0,1,3,16.0,2,1,4,4.0,1,3.0,3,3.0,0,3,1,1.0,2,23931.0,1,1,0
795
+ 300793,21.0,1,1,9.0,3,1,3,4.0,0,3.0,2,2.0,0,5,1,1.0,1,18230.0,1,0,0
796
+ 300794,28.0,0,1,12.0,2,0,3,4.0,0,3.0,2,2.0,1,1,1,2.0,1,21057.0,1,1,0
797
+ 300795,42.0,1,3,14.0,3,1,2,3.0,1,4.0,1,1.0,0,3,1,0.0,2,21825.0,1,2,0
798
+ 300796,50.0,1,1,7.0,1,0,3,5.0,4,3.0,2,2.0,1,3,0,1.0,0,32642.0,2,3,0
799
+ 300797,35.0,0,1,8.0,2,0,3,3.0,1,5.0,1,3.0,0,4,0,0.0,2,20093.0,1,1,0
800
+ 300798,35.0,0,1,17.0,1,1,4,5.0,1,3.0,1,3.0,0,4,1,2.0,2,23741.0,1,1,0
801
+ 300799,36.0,1,3,10.0,2,1,4,4.0,3,3.0,1,8.0,0,5,0,3.0,3,26501.0,2,2,0
802
+ 300800,39.0,1,3,23.0,2,0,3,4.0,1,4.0,3,4.0,0,1,0,1.0,2,22876.0,1,2,0
803
+ 300801,46.0,0,3,16.0,2,0,4,5.0,1,3.0,1,3.0,0,3,1,3.0,2,24271.0,1,3,0
804
+ 300802,46.0,1,3,8.0,3,0,2,3.0,2,5.0,2,4.0,0,1,1,1.0,4,33947.0,2,3,0
805
+ 300803,23.0,1,1,32.0,2,1,2,3.0,0,3.0,1,2.0,0,2,1,1.0,1,17904.0,1,0,0
806
+ 300804,43.0,1,1,9.0,2,1,4,5.0,1,3.0,3,5.0,0,2,0,2.0,2,25459.0,2,2,0
807
+ 300805,37.0,1,1,13.0,2,0,3,2.0,0,3.0,1,5.0,0,1,0,1.0,1,21716.0,1,2,0
808
+ 300806,33.0,1,1,12.0,2,1,4,3.0,0,4.0,1,2.0,1,2,1,1.0,1,21976.0,1,1,0
809
+ 300807,42.0,1,2,8.0,1,1,2,3.0,0,3.0,1,1.0,1,4,1,1.0,1,17696.0,1,2,0
810
+ 300808,43.0,0,2,9.0,3,1,4,2.0,1,5.0,1,2.0,0,1,1,2.0,2,24950.0,1,2,0
811
+ 300809,33.0,0,1,9.0,2,1,4,4.0,0,3.0,3,2.0,0,5,1,2.0,1,21746.0,1,1,0
812
+ 300810,29.0,1,1,24.0,3,1,4,4.0,1,5.0,1,3.0,0,2,0,1.0,2,23236.0,1,1,0
813
+ 300811,24.0,1,2,28.0,2,1,2,5.0,0,3.0,1,2.0,0,1,0,1.0,1,16555.0,1,0,1
814
+ 300812,38.0,0,1,12.0,3,0,3,5.0,1,3.0,1,1.0,1,1,0,2.0,2,20329.0,1,2,0
815
+ 300813,28.0,1,1,12.0,2,0,3,4.0,0,4.0,2,3.0,1,3,0,2.0,1,21156.0,1,1,0
816
+ 300814,32.0,0,1,11.0,2,0,2,1.0,0,3.0,2,4.0,1,1,0,1.0,1,17432.0,1,1,1
817
+ 300815,39.0,1,3,11.0,1,1,2,3.0,1,3.0,1,4.0,0,1,0,0.0,2,17086.0,1,2,1
818
+ 300816,41.0,1,1,9.0,3,0,4,5.0,1,3.0,1,8.0,0,5,1,2.0,2,22126.0,1,2,0
819
+ 300817,40.0,1,3,14.0,2,1,4,4.0,0,3.0,1,3.0,1,1,1,3.0,1,23212.0,1,2,1
820
+ 300818,31.0,1,1,10.0,1,0,3,4.0,0,5.0,3,7.0,1,4,0,1.0,1,21335.0,1,1,1
821
+ 300819,34.0,1,1,9.0,3,1,4,4.0,0,3.0,2,6.0,0,3,1,3.0,1,21174.0,1,1,0
822
+ 300820,37.0,1,1,10.0,1,1,2,4.0,1,4.0,3,6.0,0,2,1,1.0,2,23163.0,1,2,0
823
+ 300821,32.0,1,1,16.0,3,1,1,3.0,3,3.0,3,3.0,0,1,0,0.0,3,26244.0,2,1,0
824
+ 300822,47.0,1,1,8.0,2,0,2,3.0,4,3.0,0,2.0,1,4,1,0.0,0,31752.0,2,3,0
825
+ 300823,36.0,1,1,8.0,3,1,3,3.0,0,3.0,2,5.0,0,5,1,1.0,1,17519.0,1,2,0
826
+ 300824,26.0,1,1,8.0,3,1,2,1.0,1,3.0,1,2.0,0,3,1,1.0,2,20472.0,1,1,0
827
+ 300825,34.0,1,1,13.0,2,1,3,3.0,1,3.0,1,2.0,0,3,0,0.0,2,17585.0,1,1,1
828
+ 300826,52.0,1,1,16.0,2,1,4,4.0,0,3.0,0,5.0,0,3,1,1.0,1,20753.0,1,3,0
829
+ 300827,55.0,0,1,24.0,3,1,3,3.0,1,4.0,0,4.0,1,5,1,2.0,2,21385.0,1,3,0
830
+ 300828,29.0,0,1,7.0,2,0,3,6.0,1,3.0,0,2.0,0,3,1,1.0,2,25352.0,2,1,0
831
+ 300829,26.0,1,2,27.0,3,0,4,4.0,0,4.0,1,2.0,1,3,0,2.0,1,22347.0,1,1,1
832
+ 300830,21.0,1,3,16.0,2,1,3,4.0,0,5.0,3,3.0,0,1,0,2.0,1,21406.0,1,0,0
833
+ 300831,53.0,1,1,13.0,3,0,2,3.0,2,3.0,1,4.0,0,2,1,0.0,4,33606.0,2,3,0
834
+ 300832,39.0,1,2,9.0,2,0,2,2.0,1,4.0,0,1.0,0,2,1,0.0,2,21389.0,1,2,0
835
+ 300833,51.0,1,1,6.0,2,1,3,3.0,0,3.0,0,2.0,0,4,1,0.0,1,17723.0,1,3,0
836
+ 300834,20.0,1,3,15.0,2,1,2,3.0,0,5.0,2,2.0,0,1,0,1.0,1,17728.0,1,0,0
837
+ 300835,38.0,1,2,13.0,2,1,4,4.0,0,5.0,1,6.0,1,1,0,3.0,1,20751.0,1,2,1
838
+ 300836,42.0,1,1,15.0,3,0,4,4.0,0,5.0,1,3.0,1,3,0,3.0,1,22781.0,1,2,1
839
+ 300837,38.0,0,3,7.0,3,1,3,6.0,1,3.0,1,3.0,0,1,0,2.0,2,28203.0,2,2,0
840
+ 300838,51.0,1,1,15.0,2,1,3,3.0,0,3.0,1,4.0,0,3,1,0.0,1,17075.0,1,3,0
841
+ 300839,28.0,1,1,25.0,3,1,3,4.0,0,5.0,1,2.0,0,3,1,1.0,1,18196.0,1,1,0
842
+ 300840,59.0,1,3,31.0,2,0,2,3.0,3,5.0,3,1.0,0,3,1,0.0,3,22637.0,1,4,0
843
+ 300841,38.0,1,1,7.0,2,0,4,4.0,1,4.0,1,8.0,0,1,1,3.0,2,25125.0,2,2,0
844
+ 300842,38.0,0,3,28.0,3,0,3,4.0,0,3.0,1,7.0,0,1,1,1.0,1,21651.0,1,2,0
845
+ 300843,46.0,1,1,8.0,2,1,2,3.0,3,3.0,1,4.0,0,1,1,1.0,3,23578.0,1,3,0
846
+ 300844,36.0,1,3,23.0,3,1,4,4.0,3,4.0,1,2.0,0,1,1,2.0,3,26698.0,2,2,0
847
+ 300845,31.0,1,1,24.0,3,0,4,4.0,3,5.0,0,3.0,1,4,0,3.0,3,30594.0,2,1,0
848
+ 300846,27.0,1,3,8.0,3,1,2,3.0,0,5.0,1,1.0,0,5,0,1.0,1,18041.0,1,1,1
849
+ 300847,33.0,0,3,12.0,2,1,3,4.0,1,4.0,0,3.0,0,3,1,2.0,2,25202.0,2,1,0
850
+ 300848,23.0,1,1,10.0,2,0,3,4.0,1,3.0,0,2.0,1,5,1,2.0,2,22849.0,1,0,1
851
+ 300849,23.0,1,1,18.0,3,0,3,4.0,0,4.0,0,3.0,0,2,1,1.0,1,20922.0,1,0,0
852
+ 300850,41.0,1,1,15.0,2,1,3,3.0,0,5.0,1,2.0,0,5,1,1.0,1,17289.0,1,2,0
853
+ 300851,26.0,0,2,23.0,2,0,2,3.0,0,3.0,1,1.0,1,5,0,1.0,1,17741.0,1,1,1
854
+ 300852,24.0,0,3,19.0,2,0,3,3.0,0,4.0,0,2.0,0,1,0,0.0,1,17033.0,1,0,0
855
+ 300853,39.0,1,1,13.0,2,0,3,5.0,0,3.0,1,3.0,0,3,0,2.0,1,22380.0,1,2,0
856
+ 300854,45.0,0,1,24.0,2,1,4,6.0,0,3.0,2,4.0,0,4,1,2.0,1,20968.0,1,2,0
857
+ 300855,32.0,0,1,7.0,2,1,3,6.0,1,5.0,1,3.0,0,1,1,2.0,2,23681.0,1,1,0
858
+ 300856,60.0,1,1,10.0,3,0,3,3.0,0,5.0,0,6.0,1,2,1,2.0,1,21348.0,1,4,0
859
+ 300857,43.0,0,3,19.0,2,1,3,4.0,4,5.0,2,2.0,1,5,1,2.0,0,32436.0,2,2,1
860
+ 300858,19.0,1,3,27.0,2,1,2,4.0,0,4.0,2,2.0,1,1,1,1.0,1,17121.0,1,0,1
861
+ 300859,30.0,1,3,27.0,3,1,3,4.0,1,3.0,1,4.0,0,1,1,1.0,2,25609.0,2,1,0
862
+ 300860,29.0,1,1,6.0,2,0,2,4.0,0,5.0,1,2.0,1,1,0,0.0,1,17319.0,1,1,1
863
+ 300861,35.0,1,3,22.0,3,1,3,3.0,3,4.0,0,1.0,0,2,1,2.0,3,23020.0,1,1,0
864
+ 300862,35.0,1,3,13.0,2,1,3,3.0,0,3.0,0,2.0,0,3,1,0.0,1,17404.0,1,1,0
865
+ 300863,42.0,1,3,6.0,2,1,2,3.0,1,3.0,0,2.0,0,3,1,0.0,2,19907.0,1,2,0
tourism_package_prediction/deployment/Dockerfile ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use a minimal base image with Python 3.9 installed
2
+ FROM python:3.9
3
+
4
+ # Set the working directory inside the container to /app
5
+ WORKDIR /app
6
+
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
+ COPY . .
9
+
10
+ # Install Python dependencies listed in requirements.txt
11
+ RUN pip3 install -r requirements.txt
12
+
13
+ RUN useradd -m -u 1000 user
14
+ USER user
15
+ ENV HOME=/home/user \
16
+ PATH=/home/user/.local/bin:$PATH
17
+
18
+ WORKDIR $HOME/app
19
+
20
+ COPY --chown=user . $HOME/app
21
+
22
+ # Define the command to run the Streamlit app on port "8501" and make it accessible externally
23
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
tourism_package_prediction/deployment/app.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Streamlit App for Tourism Package Prediction
4
+ """
5
+
6
+ import streamlit as st
7
+ import pandas as pd
8
+ import numpy as np
9
+ import joblib
10
+ from huggingface_hub import hf_hub_download
11
+
12
+ # Page configuration
13
+ st.set_page_config(
14
+ page_title="Tourism Package Prediction",
15
+ page_icon="🏖️",
16
+ layout="wide",
17
+ initial_sidebar_state="expanded"
18
+ )
19
+
20
+ @st.cache_resource
21
+ def load_model():
22
+ """Load the trained model from HuggingFace Hub"""
23
+ try:
24
+ model_path = hf_hub_download(
25
+ repo_id="RavindraDubey12/Tourism-Package-Prediction-model",
26
+ filename="best_model.joblib"
27
+ )
28
+ model = joblib.load(model_path)
29
+ return model
30
+ except Exception as e:
31
+ st.error(f"Error loading model: {e}")
32
+ return None
33
+
34
+ def prepare_input_data(age, gender, marital_status, city_tier, type_of_contact,
35
+ occupation, designation, monthly_income, num_person_visiting,
36
+ num_children_visiting, preferred_property_star, num_trips,
37
+ passport, own_car, duration_of_pitch, product_pitched,
38
+ num_followups, pitch_satisfaction_score):
39
+ """Prepare input data for model prediction"""
40
+
41
+ # Create mapping dictionaries
42
+ gender_map = {"Male": 1, "Female": 0}
43
+ marital_map = {"Single": 2, "Married": 1, "Divorced": 0, "Unmarried": 3}
44
+ contact_map = {"Self Enquiry": 1, "Company Invited": 0}
45
+ occupation_map = {"Salaried": 2, "Small Business": 1, "Free Lancer": 0}
46
+ designation_map = {"Executive": 0, "Manager": 1, "Senior Manager": 2, "AVP": 3, "VP": 4}
47
+ product_map = {"Basic": 0, "Standard": 1, "Deluxe": 2, "Super Deluxe": 3}
48
+ passport_map = {"Yes": 1, "No": 0}
49
+ car_map = {"Yes": 1, "No": 0}
50
+
51
+ # Feature engineering (matching training data encoding)
52
+ if monthly_income <= 15000:
53
+ income_category = 0 # Low
54
+ elif monthly_income <= 25000:
55
+ income_category = 1 # Medium
56
+ elif monthly_income <= 35000:
57
+ income_category = 2 # High
58
+ else:
59
+ income_category = 3 # Very High
60
+
61
+ if age <= 25:
62
+ age_group = 0 # Young
63
+ elif age <= 35:
64
+ age_group = 1 # Adult
65
+ elif age <= 45:
66
+ age_group = 2 # Middle-aged
67
+ elif age <= 55:
68
+ age_group = 3 # Senior
69
+ else:
70
+ age_group = 4 # Elderly
71
+
72
+ # Create input array
73
+ input_array = np.array([[
74
+ age, contact_map[type_of_contact], city_tier, duration_of_pitch,
75
+ occupation_map[occupation], gender_map[gender], num_person_visiting,
76
+ num_followups, product_map[product_pitched], preferred_property_star,
77
+ marital_map[marital_status], num_trips, passport_map[passport],
78
+ pitch_satisfaction_score, car_map[own_car], num_children_visiting,
79
+ designation_map[designation], monthly_income, income_category, age_group
80
+ ]])
81
+
82
+ return input_array
83
+
84
+ def main():
85
+ """Main Streamlit app"""
86
+
87
+ st.title("Tourism Package Prediction")
88
+ st.markdown("### Predict Customer Purchase Likelihood for Wellness Tourism Package")
89
+ st.markdown("---")
90
+
91
+ # Load model
92
+ model = load_model()
93
+ if model is None:
94
+ st.error("Failed to load the prediction model.")
95
+ return
96
+
97
+ # Sidebar inputs
98
+ st.sidebar.header("Customer Information")
99
+
100
+ # Demographics
101
+ st.sidebar.subheader("Demographics")
102
+ age = st.sidebar.slider("Age", 18, 80, 35)
103
+ gender = st.sidebar.selectbox("Gender", ["Male", "Female"])
104
+ marital_status = st.sidebar.selectbox("Marital Status", ["Single", "Married", "Divorced", "Unmarried"])
105
+
106
+ # Location & Contact
107
+ st.sidebar.subheader("Location & Contact")
108
+ city_tier = st.sidebar.selectbox("City Tier", [1, 2, 3])
109
+ type_of_contact = st.sidebar.selectbox("Type of Contact", ["Self Enquiry", "Company Invited"])
110
+
111
+ # Professional Info
112
+ st.sidebar.subheader("Professional Info")
113
+ occupation = st.sidebar.selectbox("Occupation", ["Salaried", "Small Business", "Free Lancer"])
114
+ designation = st.sidebar.selectbox("Designation", ["Executive", "Manager", "Senior Manager", "AVP", "VP"])
115
+ monthly_income = st.sidebar.number_input("Monthly Income", 10000, 50000, 20000)
116
+
117
+ # Travel Preferences
118
+ st.sidebar.subheader("Travel Preferences")
119
+ num_person_visiting = st.sidebar.slider("Number of Persons Visiting", 1, 5, 2)
120
+ num_children_visiting = st.sidebar.slider("Number of Children Visiting", 0, 3, 0)
121
+ preferred_property_star = st.sidebar.slider("Preferred Property Star Rating", 1.0, 5.0, 3.0, 0.5)
122
+ num_trips = st.sidebar.slider("Number of Trips per Year", 0.0, 10.0, 2.0, 0.5)
123
+
124
+ # Additional Info
125
+ st.sidebar.subheader("Additional Info")
126
+ passport = st.sidebar.selectbox("Has Passport", ["Yes", "No"])
127
+ own_car = st.sidebar.selectbox("Owns Car", ["Yes", "No"])
128
+
129
+ # Sales Interaction
130
+ st.sidebar.subheader("Sales Interaction")
131
+ duration_of_pitch = st.sidebar.slider("Duration of Pitch (minutes)", 5, 60, 15)
132
+ product_pitched = st.sidebar.selectbox("Product Pitched", ["Basic", "Standard", "Deluxe", "Super Deluxe"])
133
+ num_followups = st.sidebar.slider("Number of Followups", 0.0, 6.0, 3.0, 0.5)
134
+ pitch_satisfaction_score = st.sidebar.slider("Pitch Satisfaction Score", 1, 5, 3)
135
+
136
+ # Main content
137
+ col1, col2 = st.columns([2, 1])
138
+
139
+ with col1:
140
+ st.subheader("Customer Profile Summary")
141
+ profile_data = {
142
+ "Age": age,
143
+ "Gender": gender,
144
+ "Marital Status": marital_status,
145
+ "City Tier": city_tier,
146
+ "Occupation": occupation,
147
+ "Monthly Income": f"₹{monthly_income:,}",
148
+ "Number of Persons": num_person_visiting,
149
+ "Preferred Star Rating": preferred_property_star,
150
+ "Annual Trips": num_trips,
151
+ "Has Passport": passport,
152
+ "Owns Car": own_car
153
+ }
154
+
155
+ for key, value in profile_data.items():
156
+ st.write(f"**{key}:** {value}")
157
+
158
+ with col2:
159
+ st.subheader("Prediction")
160
+
161
+ if st.button("Predict Purchase Likelihood", type="primary"):
162
+ input_data = prepare_input_data(
163
+ age, gender, marital_status, city_tier, type_of_contact,
164
+ occupation, designation, monthly_income, num_person_visiting,
165
+ num_children_visiting, preferred_property_star, num_trips,
166
+ passport, own_car, duration_of_pitch, product_pitched,
167
+ num_followups, pitch_satisfaction_score
168
+ )
169
+
170
+ try:
171
+ prediction = model.predict(input_data)[0]
172
+ prediction_proba = model.predict_proba(input_data)[0]
173
+
174
+ if prediction == 1:
175
+ st.success("High likelihood of purchase!")
176
+ st.write(f"**Confidence:** {prediction_proba[1]:.2%}")
177
+ st.balloons()
178
+ else:
179
+ st.warning("Low likelihood of purchase")
180
+ st.write(f"**Confidence:** {prediction_proba[0]:.2%}")
181
+
182
+ # Probability breakdown
183
+ st.subheader("Probability Breakdown")
184
+ prob_df = pd.DataFrame({
185
+ 'Outcome': ['Will Not Purchase', 'Will Purchase'],
186
+ 'Probability': [prediction_proba[0], prediction_proba[1]]
187
+ })
188
+ st.bar_chart(prob_df.set_index('Outcome'))
189
+
190
+ except Exception as e:
191
+ st.error(f"Prediction error: {e}")
192
+
193
+ st.markdown("---")
194
+ st.markdown("### About This Model")
195
+ st.info("""
196
+ This ML model predicts customer purchase likelihood for the Wellness Tourism Package
197
+ based on demographics, travel preferences, and sales interaction data.
198
+ """)
199
+
200
+ if __name__ == "__main__":
201
+ main()
tourism_package_prediction/deployment/deploy_to_hf.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Deployment Script for Tourism Package Prediction Project
4
+ """
5
+
6
+ from huggingface_hub import HfApi, login
7
+ import numpy as np
8
+ import os
9
+
10
+ #login(token=HF_TOKEN)
11
+
12
+ def deploy_to_huggingface_space():
13
+ """Deploy application to HuggingFace Spaces"""
14
+ print("Deploying to HuggingFace Spaces...")
15
+
16
+ try:
17
+ api = HfApi()
18
+ space_id = "RavindraDubey12/Tourism-Package-Prediction"
19
+
20
+ repo_root = os.getcwd()
21
+ deployment_dir = os.path.join(repo_root, "tourism_package_prediction", "deployment")
22
+
23
+ files_to_upload = [
24
+ (os.path.join(deployment_dir, "app.py"), "app.py"),
25
+ (os.path.join(deployment_dir, "requirements.txt"), "requirements.txt"),
26
+ (os.path.join(deployment_dir, "Dockerfile"), "Dockerfile"),
27
+ ]
28
+
29
+ print(f"Uploading files to space: {space_id}")
30
+
31
+ for local_path, repo_path in files_to_upload:
32
+ if os.path.exists(local_path):
33
+ print(f"Uploading {local_path}...")
34
+ api.upload_file(
35
+ path_or_fileobj=local_path,
36
+ path_in_repo=repo_path,
37
+ repo_id=space_id,
38
+ repo_type="space",
39
+ token=os.getenv('HF_TOKEN')
40
+ )
41
+ print(f"{local_path} uploaded successfully")
42
+
43
+ print(f"\nDeployment completed!")
44
+ print(f"App URL: https://huggingface.co/spaces/{space_id}")
45
+ return True
46
+
47
+ except Exception as e:
48
+ print(f"Deployment error: {e}")
49
+ return False
50
+
51
+ if __name__ == "__main__":
52
+ deploy_to_huggingface_space()
tourism_package_prediction/deployment/requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit==1.28.1
2
+ pandas==2.0.3
3
+ numpy==1.24.3
4
+ scikit-learn==1.3.0
5
+ xgboost==1.7.6
6
+ joblib==1.3.2
7
+ huggingface-hub==0.16.4
8
+ datasets==2.14.4
9
+ mlflow
tourism_package_prediction/model_building/data_register.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub.utils import RepositoryNotFoundError, HfHubHTTPError
2
+ from huggingface_hub import HfApi, create_repo
3
+ import os
4
+
5
+ repo_id = "RavindraDubey12/Tourism-Package-Prediction"
6
+ repo_type = "dataset"
7
+
8
+ # Initialize API client
9
+ api = HfApi(token=os.getenv("HF_TOKEN"))
10
+
11
+ # Step 1: Check if the space exists
12
+ try:
13
+ api.repo_info(repo_id=repo_id, repo_type=repo_type)
14
+ print(f"Space '{repo_id}' already exists. Using it.")
15
+ except RepositoryNotFoundError:
16
+ print(f"Space '{repo_id}' not found. Creating new space...")
17
+ create_repo(repo_id=repo_id, repo_type=repo_type, private=False)
18
+ print(f"Space '{repo_id}' created.")
19
+
20
+ api.upload_folder(
21
+ folder_path="tourism_package_prediction/data",
22
+ repo_id=repo_id,
23
+ repo_type=repo_type,
24
+ )
tourism_package_prediction/model_building/prep.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # for data manipulation
2
+ import pandas as pd
3
+ import sklearn
4
+ # for creating a folder
5
+ import os
6
+ # for data preprocessing and pipeline creation
7
+ from sklearn.model_selection import train_test_split
8
+ # for converting text data in to numerical representation
9
+ from sklearn.preprocessing import LabelEncoder
10
+ # for hugging face space authentication to upload files
11
+ from huggingface_hub import login, HfApi
12
+ from datasets import Dataset, load_dataset # Import Dataset and load_dataset class
13
+
14
+ # Load data from HuggingFace
15
+ HF_TOKEN = os.getenv("HF_TOKEN")
16
+ login(HF_TOKEN)
17
+ try:
18
+ dataset = load_dataset("RavindraDubey12/Tourism-Package-Prediction", split="train")
19
+ df = dataset.to_pandas()
20
+ if "__index_level_0__" in df.columns:
21
+ df = df.drop(columns="__index_level_0__")
22
+ print(f"Dataset loaded from HuggingFace: {len(df)} rows")
23
+ except:
24
+ df = pd.read_csv("tourism_package_prediction/data/tourism.csv")
25
+ print(f"Dataset loaded locally: {len(df)} rows")
26
+
27
+ # Data cleaning and preprocessing
28
+ print("Starting data cleaning...")
29
+
30
+ # Remove unnecessary columns
31
+ if 'Unnamed: 0' in df.columns:
32
+ df = df.drop('Unnamed: 0', axis=1)
33
+
34
+ # Handle missing values
35
+ print("Missing values before cleaning:")
36
+ print(df.isnull().sum()[df.isnull().sum() > 0])
37
+
38
+ # Fill missing values
39
+ numerical_cols = ['Age', 'DurationOfPitch', 'NumberOfFollowups', 'PreferredPropertyStar',
40
+ 'NumberOfTrips', 'PitchSatisfactionScore', 'NumberOfChildrenVisiting', 'MonthlyIncome']
41
+
42
+ for col in numerical_cols:
43
+ if col in df.columns:
44
+ df[col] = df[col].fillna(df[col].median())
45
+
46
+ categorical_cols = ['TypeofContact', 'Occupation', 'Gender', 'MaritalStatus',
47
+ 'ProductPitched', 'Designation']
48
+
49
+ for col in categorical_cols:
50
+ if col in df.columns:
51
+ df[col] = df[col].fillna(df[col].mode()[0] if not df[col].mode().empty else 'Unknown')
52
+
53
+ # Fix data inconsistencies
54
+ df['Gender'] = df['Gender'].replace('Fe Male', 'Female')
55
+
56
+ print("Missing values after cleaning:")
57
+ print(df.isnull().sum()[df.isnull().sum() > 0])
58
+
59
+ # Feature engineering
60
+ print("Feature engineering...")
61
+
62
+ # Create income categories
63
+ df['IncomeCategory'] = pd.cut(df['MonthlyIncome'],
64
+ bins=[0, 15000, 25000, 35000, float('inf')],
65
+ labels=[0, 1, 2, 3]) # Use numeric labels
66
+
67
+ # Create age groups
68
+ df['AgeGroup'] = pd.cut(df['Age'],
69
+ bins=[0, 25, 35, 45, 55, float('inf')],
70
+ labels=[0, 1, 2, 3, 4]) # Use numeric labels
71
+
72
+ # Encode categorical variables
73
+ label_encoders = {}
74
+ categorical_columns = df.select_dtypes(include=['object']).columns
75
+
76
+ for col in categorical_columns:
77
+ if col != 'CustomerID':
78
+ le = LabelEncoder()
79
+ df[col] = le.fit_transform(df[col].astype(str))
80
+ label_encoders[col] = le
81
+
82
+ print(f"Data preprocessing completed! Final shape: {df.shape}")
83
+
84
+ # Split data
85
+ print("Splitting data...")
86
+ X = df.drop(['CustomerID', 'ProdTaken'], axis=1)
87
+ y = df['ProdTaken']
88
+
89
+ X_train, X_test, y_train, y_test = train_test_split(
90
+ X, y, test_size=0.2, random_state=42, stratify=y
91
+ )
92
+
93
+ # Create train and test dataframes
94
+ train_df = pd.concat([X_train, y_train], axis=1)
95
+ test_df = pd.concat([X_test, y_test], axis=1)
96
+
97
+ # Add CustomerID
98
+ train_df.insert(0, 'CustomerID', range(300000, 300000 + len(train_df)))
99
+ test_df.insert(0, 'CustomerID', range(400000, 400000 + len(test_df)))
100
+
101
+ # Save locally
102
+ train_df.to_csv("tourism_package_prediction/data/train_data.csv", index=False)
103
+ test_df.to_csv("tourism_package_prediction/data/test_data.csv", index=False)
104
+
105
+ print(f"Data split completed!")
106
+ print(f"Training set: {len(train_df)} samples")
107
+ print(f"Test set: {len(test_df)} samples")
108
+
109
+ # Upload train dataset
110
+ train_dataset = Dataset.from_pandas(train_df,preserve_index=False)
111
+ train_dataset.push_to_hub(
112
+ "RavindraDubey12/Tourism-Package-Prediction-train",
113
+ private=False,
114
+ token=HF_TOKEN
115
+ )
116
+
117
+ # Upload test dataset
118
+ test_dataset = Dataset.from_pandas(test_df,preserve_index=False)
119
+ test_dataset.push_to_hub(
120
+ "RavindraDubey12/Tourism-Package-Prediction-test",
121
+ private=False,
122
+ token=HF_TOKEN
123
+ )
124
+ print("Processed datasets uploaded to HuggingFace!")
tourism_package_prediction/model_building/train.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # for data manipulation
2
+ import pandas as pd
3
+ from datasets import load_dataset
4
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder
5
+ from sklearn.compose import make_column_transformer
6
+ from sklearn.pipeline import make_pipeline
7
+ from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
8
+ from sklearn.tree import DecisionTreeClassifier
9
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, classification_report
10
+ # for model training, tuning, and evaluation
11
+ import xgboost as xgb
12
+ from sklearn.model_selection import GridSearchCV
13
+ # for model serialization
14
+ import joblib
15
+ # for creating a folder
16
+ import os
17
+ # for hugging face space authentication to upload files
18
+ from huggingface_hub import login, HfApi, create_repo
19
+ from huggingface_hub import HfApi
20
+ from huggingface_hub.utils import RepositoryNotFoundError, HfHubHTTPError
21
+ import mlflow
22
+
23
+ mlflow.set_tracking_uri("http://localhost:5000")
24
+ mlflow.set_experiment("mlops-training-experiment")
25
+
26
+ api = HfApi()
27
+
28
+ HF_TOKEN = os.getenv("HF_TOKEN")
29
+
30
+ # Setup MLflow
31
+ mlflow.set_experiment("tourism_package_prediction")
32
+
33
+ # Load train and test data
34
+ try:
35
+ train_dataset = load_dataset("RavindraDubey12/Tourism-Package-Prediction-train", split="train")
36
+ train_df = train_dataset.to_pandas()
37
+ test_dataset = load_dataset("RavindraDubey12/Tourism-Package-Prediction-test", split="train")
38
+ test_df = test_dataset.to_pandas()
39
+ print("Data loaded from HuggingFace")
40
+ except Exception as e :
41
+ print(f"Error loading from HF: {e}")
42
+ train_df = pd.read_csv("tourism_package_prediction/data/train_data.csv")
43
+ test_df = pd.read_csv("tourism_package_prediction/data/test_data.csv")
44
+ print("Data loaded locally")
45
+
46
+ for df in (train_df, test_df):
47
+ if "__index_level_0__" in df.columns:
48
+ df.drop(columns="__index_level_0__", inplace=True)
49
+ if "Unnamed: 0" in df.columns:
50
+ df.drop(columns="Unnamed: 0", inplace=True)
51
+
52
+ # Prepare features
53
+ X_train = train_df.drop(['CustomerID', 'ProdTaken'], axis=1)
54
+ y_train = train_df['ProdTaken']
55
+ X_test = test_df.drop(['CustomerID', 'ProdTaken'], axis=1)
56
+ y_test = test_df['ProdTaken']
57
+
58
+ print(f"Training features shape: {X_train.shape}")
59
+ print(f"Test features shape: {X_test.shape}")
60
+
61
+ # Function to evaluate models
62
+ def evaluate_model(model, X_test, y_test, model_name):
63
+ y_pred = model.predict(X_test)
64
+ y_pred_proba = model.predict_proba(X_test)[:, 1] if hasattr(model, 'predict_proba') else y_pred
65
+
66
+ metrics = {
67
+ 'accuracy': accuracy_score(y_test, y_pred),
68
+ 'precision': precision_score(y_test, y_pred),
69
+ 'recall': recall_score(y_test, y_pred),
70
+ 'f1_score': f1_score(y_test, y_pred),
71
+ 'roc_auc': roc_auc_score(y_test, y_pred_proba)
72
+ }
73
+
74
+ print(f"\n{model_name} Performance:")
75
+ for metric, value in metrics.items():
76
+ print(f" {metric.capitalize()}: {value:.4f}")
77
+
78
+ return metrics
79
+
80
+ # Train models with hyperparameter tuning
81
+ models_results = []
82
+
83
+ # 1. Decision Tree
84
+ print("Training Decision Tree...")
85
+ with mlflow.start_run(run_name="DecisionTree"):
86
+ param_grid = {
87
+ 'max_depth': [5, 10, 15],
88
+ 'min_samples_split': [2, 5, 10],
89
+ 'min_samples_leaf': [1, 2, 4]
90
+ }
91
+
92
+ dt = DecisionTreeClassifier(random_state=42)
93
+ grid_search = GridSearchCV(dt, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
94
+ grid_search.fit(X_train, y_train)
95
+
96
+ best_dt = grid_search.best_estimator_
97
+ mlflow.log_params(grid_search.best_params_)
98
+ mlflow.log_param("model_type", "DecisionTree")
99
+
100
+ dt_metrics = evaluate_model(best_dt, X_test, y_test, "Decision Tree")
101
+ mlflow.log_metrics(dt_metrics)
102
+ mlflow.sklearn.log_model(best_dt, "model")
103
+
104
+ models_results.append(("Decision Tree", best_dt, dt_metrics['roc_auc']))
105
+
106
+ # 2. Random Forest
107
+ print("Training Random Forest...")
108
+ with mlflow.start_run(run_name="RandomForest"):
109
+ param_grid = {
110
+ 'n_estimators': [100, 200],
111
+ 'max_depth': [10, 15, None],
112
+ 'min_samples_split': [2, 5],
113
+ 'min_samples_leaf': [1, 2]
114
+ }
115
+
116
+ rf = RandomForestClassifier(random_state=42)
117
+ grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
118
+ grid_search.fit(X_train, y_train)
119
+
120
+ best_rf = grid_search.best_estimator_
121
+ mlflow.log_params(grid_search.best_params_)
122
+ mlflow.log_param("model_type", "RandomForest")
123
+
124
+ rf_metrics = evaluate_model(best_rf, X_test, y_test, "Random Forest")
125
+ mlflow.log_metrics(rf_metrics)
126
+ mlflow.sklearn.log_model(best_rf, "model")
127
+
128
+ models_results.append(("Random Forest", best_rf, rf_metrics['roc_auc']))
129
+
130
+ # 3. Gradient Boosting
131
+ print("Training Gradient Boosting...")
132
+ with mlflow.start_run(run_name="GradientBoosting"):
133
+ param_grid = {
134
+ 'n_estimators': [100, 200],
135
+ 'learning_rate': [0.05, 0.1, 0.15],
136
+ 'max_depth': [3, 5, 7]
137
+ }
138
+
139
+ gb = GradientBoostingClassifier(random_state=42)
140
+ grid_search = GridSearchCV(gb, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
141
+ grid_search.fit(X_train, y_train)
142
+
143
+ best_gb = grid_search.best_estimator_
144
+ mlflow.log_params(grid_search.best_params_)
145
+ mlflow.log_param("model_type", "GradientBoosting")
146
+
147
+ gb_metrics = evaluate_model(best_gb, X_test, y_test, "Gradient Boosting")
148
+ mlflow.log_metrics(gb_metrics)
149
+ mlflow.sklearn.log_model(best_gb, "model")
150
+
151
+ models_results.append(("Gradient Boosting", best_gb, gb_metrics['roc_auc']))
152
+
153
+ # 4. XGBoost
154
+ print("Training XGBoost...")
155
+ with mlflow.start_run(run_name="XGBoost"):
156
+ param_grid = {
157
+ 'n_estimators': [100, 200],
158
+ 'learning_rate': [0.05, 0.1, 0.15],
159
+ 'max_depth': [3, 5, 7],
160
+ 'subsample': [0.8, 0.9]
161
+ }
162
+
163
+ xgb_model = xgb.XGBClassifier(random_state=42, eval_metric='logloss')
164
+ grid_search = GridSearchCV(xgb_model, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
165
+ grid_search.fit(X_train, y_train)
166
+
167
+ best_xgb = grid_search.best_estimator_
168
+ mlflow.log_params(grid_search.best_params_)
169
+ mlflow.log_param("model_type", "XGBoost")
170
+
171
+ xgb_metrics = evaluate_model(best_xgb, X_test, y_test, "XGBoost")
172
+ mlflow.log_metrics(xgb_metrics)
173
+ mlflow.xgboost.log_model(best_xgb, "model")
174
+
175
+ models_results.append(("XGBoost", best_xgb, xgb_metrics['roc_auc']))
176
+
177
+ # 5. AdaBoost
178
+ print("Training AdaBoost...")
179
+ with mlflow.start_run(run_name="AdaBoost"):
180
+ param_grid = {
181
+ 'n_estimators': [50, 100, 200],
182
+ 'learning_rate': [0.5, 1.0, 1.5]
183
+ }
184
+
185
+ ada = AdaBoostClassifier(random_state=42)
186
+ grid_search = GridSearchCV(ada, param_grid, cv=5, scoring='roc_auc', n_jobs=-1)
187
+ grid_search.fit(X_train, y_train)
188
+
189
+ best_ada = grid_search.best_estimator_
190
+ mlflow.log_params(grid_search.best_params_)
191
+ mlflow.log_param("model_type", "AdaBoost")
192
+
193
+ ada_metrics = evaluate_model(best_ada, X_test, y_test, "AdaBoost")
194
+ mlflow.log_metrics(ada_metrics)
195
+ mlflow.sklearn.log_model(best_ada, "model")
196
+
197
+ models_results.append(("AdaBoost", best_ada, ada_metrics['roc_auc']))
198
+
199
+ # Compare models and select best
200
+ print("\n" + "="*60)
201
+ print("MODEL COMPARISON RESULTS")
202
+ print("="*60)
203
+
204
+ results_df = pd.DataFrame([(name, score) for name, model, score in models_results],
205
+ columns=['Model', 'ROC_AUC'])
206
+ print(results_df)
207
+
208
+ # Find best model
209
+ best_model_name, best_model, best_score = max(models_results, key=lambda x: x[2])
210
+ print(f"\nBest Model: {best_model_name} (ROC-AUC: {best_score:.4f})")
211
+
212
+ # Save best model
213
+ os.makedirs("tourism_package_prediction/model_building", exist_ok=True)
214
+ joblib.dump(best_model, "tourism_package_prediction/model_building/best_model.joblib")
215
+
216
+ # Register best model to HuggingFace
217
+ api = HfApi()
218
+ repo_id = "RavindraDubey12/Tourism-Package-Prediction-model"
219
+
220
+ try:
221
+ api.create_repo(repo_id=repo_id, exist_ok=True, private=False)
222
+ api.upload_file(
223
+ path_or_fileobj="tourism_package_prediction/model_building/best_model.joblib",
224
+ path_in_repo="best_model.joblib",
225
+ repo_id=repo_id,
226
+ token=HF_TOKEN
227
+ )
228
+ print(f"Best model registered to HuggingFace: {repo_id}")
229
+ except Exception as e:
230
+ print(f"Error registering model: {e}")
tourism_package_prediction/requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ huggingface_hub==0.32.6
2
+ datasets==3.6.0
3
+ pandas==2.2.2
4
+ scikit-learn==1.6.0
5
+ xgboost==2.1.4
6
+ mlflow==3.0.1