Music-gen / app.py
AiCoderv2's picture
Update app.py from anycoder
b7b0495 verified
import gradio as gr
import torch
from transformers import AutoProcessor, MusicgenForConditionalGeneration
import os
from pathlib import Path
import time
import tempfile
import numpy as np
from scipy.io.wavfile import write
# Custom theme for music maker
custom_theme = gr.themes.Soft(
primary_hue="purple",
secondary_hue="indigo",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
text_size="lg",
spacing_size="lg",
radius_size="md"
).set(
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_700",
block_title_text_weight="600",
)
# Model configuration
MODEL_NAME = "facebook/musicgen-small"
MODEL_CACHE_DIR = Path.home() / ".cache" / "huggingface" / "musicgen"
MAX_NEW_TOKENS = 500 # Increased for longer generation
AUDIO_DURATION = 240 # 4 minutes max
# Initialize model with optimized settings
def load_model():
"""Load the MusicGen model with caching and optimization"""
if not os.path.exists(MODEL_CACHE_DIR):
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
print("Loading MusicGen model...")
start_time = time.time()
# Load processor
processor = AutoProcessor.from_pretrained(
MODEL_NAME,
cache_dir=MODEL_CACHE_DIR
)
# Load model with optimized settings
model = MusicgenForConditionalGeneration.from_pretrained(
MODEL_NAME,
cache_dir=MODEL_CACHE_DIR,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None
)
# Optimize for inference
if torch.cuda.is_available():
model = model.to("cuda")
model.eval() # Set to evaluation mode
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
return model, processor
# Global variables for model
model, processor = load_model()
def generate_music(prompt, duration, temperature, top_k):
"""
Generate music from text prompt using MusicGen model
Args:
prompt: Text description of the music
duration: Duration in seconds (5-240)
temperature: Creativity parameter
top_k: Sampling parameter
Returns:
Generated audio file path
"""
try:
# Calculate tokens needed for the requested duration
# MusicGen generates at ~50 tokens per second
tokens_per_second = 50
max_new_tokens = int(duration * tokens_per_second)
# Generate music using MusicGen
inputs = processor(
text=[prompt],
padding=True,
return_tensors="pt"
).to(model.device)
# Generate audio with optimized settings
audio_values = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_k=top_k,
use_cache=True # Enable caching for faster generation
)
# Get sampling rate from processor
sampling_rate = processor.feature_extractor.sampling_rate
# Convert audio tensor to numpy array
audio_data = audio_values[0, 0].cpu().numpy()
# Ensure stereo format
if len(audio_data.shape) == 1:
audio_data = np.stack([audio_data, audio_data], axis=0)
elif audio_data.shape[0] == 1:
audio_data = np.concatenate([audio_data, audio_data], axis=0)
# Normalize and convert to 16-bit
audio_data = audio_data / np.max(np.abs(audio_data)) * 0.9
audio_data = (audio_data * 32767).astype(np.int16)
# Create temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
write(temp_file.name, sampling_rate, audio_data.T)
return temp_file.name
except Exception as e:
print(f"Error generating music: {e}")
raise gr.Error(f"Failed to generate music: {str(e)}")
def music_maker_interface(prompt, duration, temperature, top_k):
"""
Main interface function for music generation
"""
if not prompt.strip():
raise gr.Error("Please enter a music description")
if duration < 5 or duration > 240:
raise gr.Error("Duration must be between 5 and 240 seconds (4 minutes)")
# Show loading state
progress = gr.Progress()
for i in progress.tqdm(range(10), desc=f"Generating {duration} second music..."):
time.sleep(0.2) # Faster progress for optimized model
# Generate music
audio_file = generate_music(prompt, duration, temperature, top_k)
return audio_file
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# 🎡 AI Music Maker - Extended Edition
Create original music from text descriptions using AI! Now with support for songs up to 4 minutes long.
[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
""")
with gr.Row():
with gr.Column():
# Input controls
prompt = gr.Textbox(
label="Music Description",
placeholder="e.g., 'Happy electronic dance music with catchy beats'",
lines=3
)
duration = gr.Slider(
minimum=5,
maximum=240,
value=30,
step=5,
label="Duration (seconds) - Up to 4 minutes!"
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Creativity (Temperature)"
)
top_k = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=10,
label="Sampling Diversity (Top K)"
)
generate_btn = gr.Button("🎡 Generate Music", variant="primary", size="lg")
# Examples
gr.Examples(
examples=[
["Happy electronic dance music with catchy beats and uplifting melodies"],
["Calm piano music for meditation and relaxation"],
["Epic orchestral soundtrack with dramatic strings and powerful brass"],
["Jazz improvisation with saxophone and piano"],
["Rock guitar solo with heavy distortion and fast tempo"]
],
inputs=[prompt],
label="Try these examples:"
)
with gr.Column():
# Output
audio_output = gr.Audio(
label="Generated Music",
type="filepath",
interactive=False,
autoplay=True
)
# Status and info
status = gr.Markdown("Enter a description and click 'Generate Music' to create your track!")
model_info = gr.Markdown(f"""
### Model Info
- **Model**: MusicGen Small
- **Cache Location**: `{MODEL_CACHE_DIR}`
- **Device**: {'CUDA' if torch.cuda.is_available() else 'CPU'}
- **Max Duration**: {AUDIO_DURATION}s (4 minutes)
- **Generation Speed**: Optimized for performance
""")
# Event handlers
generate_btn.click(
fn=music_maker_interface,
inputs=[prompt, duration, temperature, top_k],
outputs=[audio_output],
api_visibility="public"
)
# Update status when inputs change
prompt.change(
fn=lambda p: f"Ready to generate music from: '{p}'",
inputs=[prompt],
outputs=[status]
)
# Launch the app
demo.launch(
theme=custom_theme,
footer_links=[
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"},
{"label": "MusicGen Model", "url": "https://huggingface.co/facebook/musicgen-small"},
{"label": "Gradio", "url": "https://gradio.app"}
],
show_error=True,
share=True
)