Update models/model_loaders.py
Browse files- models/model_loaders.py +33 -15
models/model_loaders.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Model Loading and Memory Management
|
| 4 |
-
Handles lazy loading of SAM2 and MatAnyone models with caching
|
| 5 |
(Enhanced logging, error handling, and memory safety)
|
| 6 |
"""
|
|
|
|
| 7 |
import os
|
| 8 |
import gc
|
| 9 |
import logging
|
|
@@ -11,8 +12,10 @@
|
|
| 11 |
import torch
|
| 12 |
import psutil
|
| 13 |
from contextlib import contextmanager
|
|
|
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
|
|
|
| 16 |
@contextmanager
|
| 17 |
def torch_memory_manager():
|
| 18 |
try:
|
|
@@ -23,18 +26,21 @@ def torch_memory_manager():
|
|
| 23 |
torch.cuda.empty_cache()
|
| 24 |
gc.collect()
|
| 25 |
logger.info("[torch_memory_manager] Exit, cleaned up")
|
|
|
|
| 26 |
def get_memory_usage():
|
| 27 |
memory_info = {}
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
memory_info['gpu_allocated'] = torch.cuda.memory_allocated() / 1e9
|
| 30 |
memory_info['gpu_reserved'] = torch.cuda.memory_reserved() / 1e9
|
| 31 |
memory_info['gpu_free'] = (torch.cuda.get_device_properties(0).total_memory -
|
| 32 |
-
|
| 33 |
memory_info['ram_used'] = psutil.virtual_memory().used / 1e9
|
| 34 |
memory_info['ram_available'] = psutil.virtual_memory().available / 1e9
|
| 35 |
logger.info(f"[get_memory_usage] {memory_info}")
|
| 36 |
return memory_info
|
|
|
|
| 37 |
def clear_model_cache():
|
|
|
|
| 38 |
logger.info("[clear_model_cache] Clearing all model caches...")
|
| 39 |
if hasattr(st, 'cache_resource'):
|
| 40 |
st.cache_resource.clear()
|
|
@@ -42,8 +48,10 @@ def clear_model_cache():
|
|
| 42 |
torch.cuda.empty_cache()
|
| 43 |
gc.collect()
|
| 44 |
logger.info("[clear_model_cache] Model cache cleared")
|
|
|
|
| 45 |
@st.cache_resource(show_spinner=False)
|
| 46 |
def load_sam2_predictor():
|
|
|
|
| 47 |
try:
|
| 48 |
logger.info("[load_sam2_predictor] Loading SAM2 image predictor...")
|
| 49 |
from sam2.build_sam import build_sam2
|
|
@@ -83,17 +91,21 @@ def load_sam2_predictor():
|
|
| 83 |
predictor.model.eval()
|
| 84 |
logger.info(f"[load_sam2_predictor] SAM2 model moved to {device} and set to eval mode")
|
| 85 |
logger.info(f"β
SAM2 loaded successfully on {device}!")
|
| 86 |
-
return predictor
|
| 87 |
except Exception as e:
|
| 88 |
logger.error(f"β Failed to load SAM2 predictor: {e}", exc_info=True)
|
| 89 |
import traceback
|
| 90 |
traceback.print_exc()
|
| 91 |
-
return None
|
|
|
|
| 92 |
def load_sam2():
|
| 93 |
-
|
|
|
|
| 94 |
return predictor
|
|
|
|
| 95 |
@st.cache_resource(show_spinner=False)
|
| 96 |
def load_matanyone_processor():
|
|
|
|
| 97 |
try:
|
| 98 |
logger.info("[load_matanyone_processor] Loading MatAnyone processor...")
|
| 99 |
from matanyone import InferenceCore
|
|
@@ -112,35 +124,37 @@ def load_matanyone_processor():
|
|
| 112 |
processor.device = device
|
| 113 |
logger.info(f"[load_matanyone_processor] Set processor.device to {device}")
|
| 114 |
logger.info(f"β
MatAnyone loaded successfully on {device}!")
|
| 115 |
-
return processor
|
| 116 |
except Exception as e:
|
| 117 |
logger.error(f"β Failed to load MatAnyone: {e}", exc_info=True)
|
| 118 |
import traceback
|
| 119 |
traceback.print_exc()
|
| 120 |
-
return None
|
|
|
|
| 121 |
def load_matanyone():
|
| 122 |
-
|
|
|
|
| 123 |
return processor
|
|
|
|
| 124 |
def test_models():
|
|
|
|
| 125 |
results = {
|
| 126 |
-
'sam2': {'loaded': False, 'error': None
|
| 127 |
-
'matanyone': {'loaded': False, 'error': None
|
| 128 |
}
|
| 129 |
try:
|
| 130 |
-
sam2_predictor
|
| 131 |
if sam2_predictor is not None:
|
| 132 |
results['sam2']['loaded'] = True
|
| 133 |
-
results['sam2']['device'] = sam2_device
|
| 134 |
else:
|
| 135 |
results['sam2']['error'] = "Predictor returned None"
|
| 136 |
except Exception as e:
|
| 137 |
results['sam2']['error'] = str(e)
|
| 138 |
logger.error(f"[test_models] SAM2 error: {e}", exc_info=True)
|
| 139 |
try:
|
| 140 |
-
matanyone_processor
|
| 141 |
if matanyone_processor is not None:
|
| 142 |
results['matanyone']['loaded'] = True
|
| 143 |
-
results['matanyone']['device'] = matanyone_device
|
| 144 |
else:
|
| 145 |
results['matanyone']['error'] = "Processor returned None"
|
| 146 |
except Exception as e:
|
|
@@ -148,6 +162,7 @@ def test_models():
|
|
| 148 |
logger.error(f"[test_models] MatAnyone error: {e}", exc_info=True)
|
| 149 |
logger.info(f"[test_models] Results: {results}")
|
| 150 |
return results
|
|
|
|
| 151 |
def log_memory_usage(stage=""):
|
| 152 |
memory_info = get_memory_usage()
|
| 153 |
log_msg = f"Memory usage"
|
|
@@ -160,6 +175,7 @@ def log_memory_usage(stage=""):
|
|
| 160 |
print(log_msg, flush=True)
|
| 161 |
logger.info(log_msg)
|
| 162 |
return memory_info
|
|
|
|
| 163 |
def check_memory_available(required_gb=2.0):
|
| 164 |
if not torch.cuda.is_available():
|
| 165 |
return False, 0.0
|
|
@@ -167,7 +183,9 @@ def check_memory_available(required_gb=2.0):
|
|
| 167 |
free_gb = memory_info.get('gpu_free', 0)
|
| 168 |
logger.info(f"[check_memory_available] free_gb={free_gb}, required={required_gb}")
|
| 169 |
return free_gb >= required_gb, free_gb
|
|
|
|
| 170 |
def free_memory_aggressive():
|
|
|
|
| 171 |
logger.info("[free_memory_aggressive] Performing aggressive memory cleanup...")
|
| 172 |
print("Performing aggressive memory cleanup...", flush=True)
|
| 173 |
clear_model_cache()
|
|
@@ -181,4 +199,4 @@ def free_memory_aggressive():
|
|
| 181 |
gc.collect()
|
| 182 |
print("Memory cleanup complete", flush=True)
|
| 183 |
logger.info("Memory cleanup complete")
|
| 184 |
-
log_memory_usage("after cleanup")
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Model Loading and Memory Management
|
| 4 |
+
Handles lazy loading of SAM2 and MatAnyone models with caching.
|
| 5 |
(Enhanced logging, error handling, and memory safety)
|
| 6 |
"""
|
| 7 |
+
|
| 8 |
import os
|
| 9 |
import gc
|
| 10 |
import logging
|
|
|
|
| 12 |
import torch
|
| 13 |
import psutil
|
| 14 |
from contextlib import contextmanager
|
| 15 |
+
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
@contextmanager
|
| 20 |
def torch_memory_manager():
|
| 21 |
try:
|
|
|
|
| 26 |
torch.cuda.empty_cache()
|
| 27 |
gc.collect()
|
| 28 |
logger.info("[torch_memory_manager] Exit, cleaned up")
|
| 29 |
+
|
| 30 |
def get_memory_usage():
|
| 31 |
memory_info = {}
|
| 32 |
if torch.cuda.is_available():
|
| 33 |
memory_info['gpu_allocated'] = torch.cuda.memory_allocated() / 1e9
|
| 34 |
memory_info['gpu_reserved'] = torch.cuda.memory_reserved() / 1e9
|
| 35 |
memory_info['gpu_free'] = (torch.cuda.get_device_properties(0).total_memory -
|
| 36 |
+
torch.cuda.memory_allocated()) / 1e9
|
| 37 |
memory_info['ram_used'] = psutil.virtual_memory().used / 1e9
|
| 38 |
memory_info['ram_available'] = psutil.virtual_memory().available / 1e9
|
| 39 |
logger.info(f"[get_memory_usage] {memory_info}")
|
| 40 |
return memory_info
|
| 41 |
+
|
| 42 |
def clear_model_cache():
|
| 43 |
+
"""Manual/debug only: Clear Streamlit resource cache and free memory."""
|
| 44 |
logger.info("[clear_model_cache] Clearing all model caches...")
|
| 45 |
if hasattr(st, 'cache_resource'):
|
| 46 |
st.cache_resource.clear()
|
|
|
|
| 48 |
torch.cuda.empty_cache()
|
| 49 |
gc.collect()
|
| 50 |
logger.info("[clear_model_cache] Model cache cleared")
|
| 51 |
+
|
| 52 |
@st.cache_resource(show_spinner=False)
|
| 53 |
def load_sam2_predictor():
|
| 54 |
+
"""Load SAM2 image predictor, choosing model size based on available GPU memory."""
|
| 55 |
try:
|
| 56 |
logger.info("[load_sam2_predictor] Loading SAM2 image predictor...")
|
| 57 |
from sam2.build_sam import build_sam2
|
|
|
|
| 91 |
predictor.model.eval()
|
| 92 |
logger.info(f"[load_sam2_predictor] SAM2 model moved to {device} and set to eval mode")
|
| 93 |
logger.info(f"β
SAM2 loaded successfully on {device}!")
|
| 94 |
+
return predictor
|
| 95 |
except Exception as e:
|
| 96 |
logger.error(f"β Failed to load SAM2 predictor: {e}", exc_info=True)
|
| 97 |
import traceback
|
| 98 |
traceback.print_exc()
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
def load_sam2():
|
| 102 |
+
"""Convenience alias for legacy code: returns only the predictor object."""
|
| 103 |
+
predictor = load_sam2_predictor()
|
| 104 |
return predictor
|
| 105 |
+
|
| 106 |
@st.cache_resource(show_spinner=False)
|
| 107 |
def load_matanyone_processor():
|
| 108 |
+
"""Load MatAnyone processor (inference core) on the best available device."""
|
| 109 |
try:
|
| 110 |
logger.info("[load_matanyone_processor] Loading MatAnyone processor...")
|
| 111 |
from matanyone import InferenceCore
|
|
|
|
| 124 |
processor.device = device
|
| 125 |
logger.info(f"[load_matanyone_processor] Set processor.device to {device}")
|
| 126 |
logger.info(f"β
MatAnyone loaded successfully on {device}!")
|
| 127 |
+
return processor
|
| 128 |
except Exception as e:
|
| 129 |
logger.error(f"β Failed to load MatAnyone: {e}", exc_info=True)
|
| 130 |
import traceback
|
| 131 |
traceback.print_exc()
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
def load_matanyone():
|
| 135 |
+
"""Convenience alias for legacy code: returns only the processor object."""
|
| 136 |
+
processor = load_matanyone_processor()
|
| 137 |
return processor
|
| 138 |
+
|
| 139 |
def test_models():
|
| 140 |
+
"""For admin/diagnosis: attempts to load both models and returns status."""
|
| 141 |
results = {
|
| 142 |
+
'sam2': {'loaded': False, 'error': None},
|
| 143 |
+
'matanyone': {'loaded': False, 'error': None}
|
| 144 |
}
|
| 145 |
try:
|
| 146 |
+
sam2_predictor = load_sam2_predictor()
|
| 147 |
if sam2_predictor is not None:
|
| 148 |
results['sam2']['loaded'] = True
|
|
|
|
| 149 |
else:
|
| 150 |
results['sam2']['error'] = "Predictor returned None"
|
| 151 |
except Exception as e:
|
| 152 |
results['sam2']['error'] = str(e)
|
| 153 |
logger.error(f"[test_models] SAM2 error: {e}", exc_info=True)
|
| 154 |
try:
|
| 155 |
+
matanyone_processor = load_matanyone_processor()
|
| 156 |
if matanyone_processor is not None:
|
| 157 |
results['matanyone']['loaded'] = True
|
|
|
|
| 158 |
else:
|
| 159 |
results['matanyone']['error'] = "Processor returned None"
|
| 160 |
except Exception as e:
|
|
|
|
| 162 |
logger.error(f"[test_models] MatAnyone error: {e}", exc_info=True)
|
| 163 |
logger.info(f"[test_models] Results: {results}")
|
| 164 |
return results
|
| 165 |
+
|
| 166 |
def log_memory_usage(stage=""):
|
| 167 |
memory_info = get_memory_usage()
|
| 168 |
log_msg = f"Memory usage"
|
|
|
|
| 175 |
print(log_msg, flush=True)
|
| 176 |
logger.info(log_msg)
|
| 177 |
return memory_info
|
| 178 |
+
|
| 179 |
def check_memory_available(required_gb=2.0):
|
| 180 |
if not torch.cuda.is_available():
|
| 181 |
return False, 0.0
|
|
|
|
| 183 |
free_gb = memory_info.get('gpu_free', 0)
|
| 184 |
logger.info(f"[check_memory_available] free_gb={free_gb}, required={required_gb}")
|
| 185 |
return free_gb >= required_gb, free_gb
|
| 186 |
+
|
| 187 |
def free_memory_aggressive():
|
| 188 |
+
"""For emergency/manual use only! Do NOT call after every video or from UI!"""
|
| 189 |
logger.info("[free_memory_aggressive] Performing aggressive memory cleanup...")
|
| 190 |
print("Performing aggressive memory cleanup...", flush=True)
|
| 191 |
clear_model_cache()
|
|
|
|
| 199 |
gc.collect()
|
| 200 |
print("Memory cleanup complete", flush=True)
|
| 201 |
logger.info("Memory cleanup complete")
|
| 202 |
+
log_memory_usage("after cleanup")
|