Update pipeline/video_pipeline.py
Browse files- pipeline/video_pipeline.py +70 -11
pipeline/video_pipeline.py
CHANGED
|
@@ -21,7 +21,7 @@
|
|
| 21 |
from collections import deque
|
| 22 |
import torch
|
| 23 |
from PIL import Image
|
| 24 |
-
import contextlib
|
| 25 |
|
| 26 |
import streamlit as st
|
| 27 |
|
|
@@ -107,7 +107,7 @@ def _normalize_input(inp, work_dir: Path) -> str:
|
|
| 107 |
return str(target)
|
| 108 |
|
| 109 |
# --- SAM2 Mask Generation (multi-frame, CUDA-for-seed only; returns mask at ORIGINAL size) ---
|
| 110 |
-
def generate_first_frame_mask(video_path, predictor, num_frames: int = 3):
|
| 111 |
"""
|
| 112 |
Build a robust seed mask by running SAM2 on the first N frames (default 3),
|
| 113 |
upsampling each mask back to the ORIGINAL video resolution, and combining
|
|
@@ -115,6 +115,9 @@ def generate_first_frame_mask(video_path, predictor, num_frames: int = 3):
|
|
| 115 |
offloaded back to CPU to free VRAM before MatAnyone runs.
|
| 116 |
Output is a uint8 mask in {0, 255} at (orig_h, orig_w).
|
| 117 |
"""
|
|
|
|
|
|
|
|
|
|
| 118 |
# Move SAM2 model to CUDA only for seeding
|
| 119 |
try:
|
| 120 |
if torch.cuda.is_available() and hasattr(predictor, "model"):
|
|
@@ -157,6 +160,9 @@ def generate_first_frame_mask(video_path, predictor, num_frames: int = 3):
|
|
| 157 |
autocast_ctx = torch.autocast("cuda", dtype=torch.float16) if torch.cuda.is_available() else contextlib.nullcontext()
|
| 158 |
with torch.inference_mode(), autocast_ctx:
|
| 159 |
for idx, frame in enumerate(frames):
|
|
|
|
|
|
|
|
|
|
| 160 |
h, w = frame.shape[:2]
|
| 161 |
# Downscale for inference if needed (β€1080 on the long side)
|
| 162 |
if max(h, w) > 1080:
|
|
@@ -212,6 +218,9 @@ def generate_first_frame_mask(video_path, predictor, num_frames: int = 3):
|
|
| 212 |
logger.info(f"[sam2] multi-frame seed: N={len(masks_fullres)}, "
|
| 213 |
f"orig_size={orig_w}x{orig_h}, majority={required}/{len(masks_fullres)}")
|
| 214 |
|
|
|
|
|
|
|
|
|
|
| 215 |
# Offload SAM2 weights + free CUDA cache BEFORE MatAnyone
|
| 216 |
try:
|
| 217 |
if hasattr(predictor, "model"):
|
|
@@ -227,8 +236,11 @@ def generate_first_frame_mask(video_path, predictor, num_frames: int = 3):
|
|
| 227 |
return vote
|
| 228 |
|
| 229 |
# --- Temporal Smoothing ---
|
| 230 |
-
def smooth_alpha_video(alpha_path, output_path, window_size=5):
|
| 231 |
"""Apply temporal smoothing to alpha masks"""
|
|
|
|
|
|
|
|
|
|
| 232 |
cap = cv2.VideoCapture(alpha_path)
|
| 233 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 234 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
@@ -250,8 +262,11 @@ def smooth_alpha_video(alpha_path, output_path, window_size=5):
|
|
| 250 |
return output_path
|
| 251 |
|
| 252 |
# --- Transparent MOV Creation (FFmpeg) ---
|
| 253 |
-
def create_transparent_mov(foreground_path, alpha_path, output_dir):
|
| 254 |
"""Create transparent MOV using FFmpeg (reliable alpha handling)"""
|
|
|
|
|
|
|
|
|
|
| 255 |
output_path = str(output_dir / "transparent.mov")
|
| 256 |
logger.info(f"[create_transparent_mov] Foreground: {foreground_path}, Alpha: {alpha_path}, Output: {output_path}")
|
| 257 |
try:
|
|
@@ -288,9 +303,13 @@ def create_transparent_mov(foreground_path, alpha_path, output_dir):
|
|
| 288 |
return None
|
| 289 |
|
| 290 |
# --- Stage 1: Transparent Video Creation (with watchdog for MatAnyone) ---
|
| 291 |
-
def stage1_create_transparent_video(input_file, sam2_predictor, matanyone_processor, mat_timeout_sec: int = 180):
|
| 292 |
"""Pipeline: SAM2 β MatAnyone β FFmpeg MOV (with watchdog timeout on MatAnyone)"""
|
| 293 |
logger.info("Stage 1: Creating transparent video")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
heartbeat_flag = {"running": True}
|
| 295 |
threading.Thread(target=heartbeat_monitor, args=(heartbeat_flag,), daemon=True).start()
|
| 296 |
try:
|
|
@@ -308,6 +327,9 @@ def stage1_create_transparent_video(input_file, sam2_predictor, matanyone_proces
|
|
| 308 |
raise FileNotFoundError(f"Input not found: {input_path}")
|
| 309 |
|
| 310 |
# 1) Extract audio (best effort)
|
|
|
|
|
|
|
|
|
|
| 311 |
audio_path = str(temp_dir / "audio.aac")
|
| 312 |
if extract_audio(input_path, audio_path):
|
| 313 |
try:
|
|
@@ -320,7 +342,7 @@ def stage1_create_transparent_video(input_file, sam2_predictor, matanyone_proces
|
|
| 320 |
audio_path = None
|
| 321 |
|
| 322 |
# 2) Seed mask via SAM2 (multi-frame at original size)
|
| 323 |
-
mask = generate_first_frame_mask(input_path, sam2_predictor)
|
| 324 |
mask_path = str(temp_dir / "mask.png")
|
| 325 |
ok = cv2.imwrite(mask_path, mask)
|
| 326 |
if not ok or not os.path.exists(mask_path):
|
|
@@ -328,6 +350,9 @@ def stage1_create_transparent_video(input_file, sam2_predictor, matanyone_proces
|
|
| 328 |
logger.info(f"[stage1] First-frame mask saved: {mask_path}")
|
| 329 |
|
| 330 |
# 3) MatAnyone with watchdog timeout
|
|
|
|
|
|
|
|
|
|
| 331 |
if torch.cuda.is_available():
|
| 332 |
try:
|
| 333 |
name = torch.cuda.get_device_name(0)
|
|
@@ -346,6 +371,7 @@ def stage1_create_transparent_video(input_file, sam2_predictor, matanyone_proces
|
|
| 346 |
)
|
| 347 |
|
| 348 |
result_holder = {"ok": False, "fg": None, "alpha": None, "exc": None}
|
|
|
|
| 349 |
|
| 350 |
def _run_matanyone():
|
| 351 |
try:
|
|
@@ -363,7 +389,15 @@ def _run_matanyone():
|
|
| 363 |
|
| 364 |
t = threading.Thread(target=_run_matanyone, daemon=True)
|
| 365 |
t.start()
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
if t.is_alive():
|
| 369 |
logger.error(f"[stage1] MatAnyone timed out after {mat_timeout_sec}s")
|
|
@@ -375,6 +409,9 @@ def _run_matanyone():
|
|
| 375 |
foreground_path, alpha_path = result_holder["fg"], result_holder["alpha"]
|
| 376 |
logger.info(f"[stage1] MatAnyone output: foreground={foreground_path}, alpha={alpha_path}")
|
| 377 |
|
|
|
|
|
|
|
|
|
|
| 378 |
if not foreground_path or not os.path.exists(foreground_path):
|
| 379 |
raise FileNotFoundError(f"MatAnyone foreground missing: {foreground_path}")
|
| 380 |
if not alpha_path or not os.path.exists(alpha_path):
|
|
@@ -388,13 +425,13 @@ def _run_matanyone():
|
|
| 388 |
logger.info(f"[stage1] Sizes: foreground={fg_sz} bytes, alpha={al_sz} bytes")
|
| 389 |
|
| 390 |
# 4) Temporal smoothing (alpha)
|
| 391 |
-
smoothed_alpha = smooth_alpha_video(alpha_path, str(temp_dir / "alpha_smoothed.mp4"))
|
| 392 |
if not os.path.exists(smoothed_alpha):
|
| 393 |
raise FileNotFoundError(f"Smoothed alpha missing: {smoothed_alpha}")
|
| 394 |
logger.info(f"[stage1] Smoothed alpha: {smoothed_alpha}")
|
| 395 |
|
| 396 |
# 5) Create transparent MOV
|
| 397 |
-
transparent_path = create_transparent_mov(foreground_path, smoothed_alpha, temp_dir)
|
| 398 |
if not transparent_path or not os.path.exists(transparent_path):
|
| 399 |
raise RuntimeError("Transparent MOV creation failed")
|
| 400 |
|
|
@@ -404,6 +441,9 @@ def _run_matanyone():
|
|
| 404 |
shutil.copyfile(transparent_path, persist_path)
|
| 405 |
logger.info(f"[stage1] Transparent video saved: {persist_path}")
|
| 406 |
|
|
|
|
|
|
|
|
|
|
| 407 |
# Return paths for Stage 2
|
| 408 |
return str(persist_path), audio_path
|
| 409 |
|
|
@@ -418,15 +458,22 @@ def _run_matanyone():
|
|
| 418 |
gc.collect()
|
| 419 |
|
| 420 |
# --- Stage 2: Background Compositing + Audio Muxing ---
|
| 421 |
-
def stage2_composite_background(transparent_video_path, audio_path, background, bg_type):
|
| 422 |
"""Composite transparent video with background and restore audio"""
|
| 423 |
logger.info("Stage 2: Compositing with background and audio")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
try:
|
| 425 |
cap = cv2.VideoCapture(transparent_video_path)
|
| 426 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 427 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 428 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 429 |
|
|
|
|
|
|
|
|
|
|
| 430 |
# Prepare background
|
| 431 |
if bg_type.lower() == "image" and isinstance(background, Image.Image):
|
| 432 |
bg_array = cv2.cvtColor(np.array(background.resize((width, height))), cv2.COLOR_RGB2BGR)
|
|
@@ -438,6 +485,9 @@ def stage2_composite_background(transparent_video_path, audio_path, background,
|
|
| 438 |
|
| 439 |
bg_resized = cv2.resize(bg_array, (width, height))
|
| 440 |
|
|
|
|
|
|
|
|
|
|
| 441 |
# Composite frames (no audio yet)
|
| 442 |
temp_output_path = str(Path("tmp") / "final_video_no_audio.mp4")
|
| 443 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
@@ -455,17 +505,26 @@ def stage2_composite_background(transparent_video_path, audio_path, background,
|
|
| 455 |
cap.release()
|
| 456 |
out.release()
|
| 457 |
|
|
|
|
|
|
|
|
|
|
| 458 |
# Mux audio back into the final video
|
| 459 |
final_output_path = str(Path("tmp") / "final_output.mp4")
|
| 460 |
if audio_path and os.path.exists(audio_path):
|
| 461 |
success = mux_audio(temp_output_path, audio_path, final_output_path)
|
| 462 |
if not success:
|
| 463 |
logger.warning("Audio muxing failed, returning video without audio")
|
|
|
|
|
|
|
| 464 |
return temp_output_path
|
| 465 |
os.remove(temp_output_path) # Clean up temp file
|
|
|
|
|
|
|
| 466 |
return final_output_path
|
| 467 |
else:
|
| 468 |
logger.warning("No audio found, returning video without audio")
|
|
|
|
|
|
|
| 469 |
return temp_output_path
|
| 470 |
except Exception as e:
|
| 471 |
logger.error(f"Stage 2 failed: {e}", exc_info=True)
|
|
@@ -482,4 +541,4 @@ def check_gpu(logger):
|
|
| 482 |
return False
|
| 483 |
|
| 484 |
# --- Initialize T4 tuning immediately if imported as module ---
|
| 485 |
-
setup_t4_environment()
|
|
|
|
| 21 |
from collections import deque
|
| 22 |
import torch
|
| 23 |
from PIL import Image
|
| 24 |
+
import contextlib
|
| 25 |
|
| 26 |
import streamlit as st
|
| 27 |
|
|
|
|
| 107 |
return str(target)
|
| 108 |
|
| 109 |
# --- SAM2 Mask Generation (multi-frame, CUDA-for-seed only; returns mask at ORIGINAL size) ---
|
| 110 |
+
def generate_first_frame_mask(video_path, predictor, num_frames: int = 3, progress_callback=None):
|
| 111 |
"""
|
| 112 |
Build a robust seed mask by running SAM2 on the first N frames (default 3),
|
| 113 |
upsampling each mask back to the ORIGINAL video resolution, and combining
|
|
|
|
| 115 |
offloaded back to CPU to free VRAM before MatAnyone runs.
|
| 116 |
Output is a uint8 mask in {0, 255} at (orig_h, orig_w).
|
| 117 |
"""
|
| 118 |
+
if progress_callback:
|
| 119 |
+
progress_callback("π― GPU engaged - SAM2 generating seed mask...")
|
| 120 |
+
|
| 121 |
# Move SAM2 model to CUDA only for seeding
|
| 122 |
try:
|
| 123 |
if torch.cuda.is_available() and hasattr(predictor, "model"):
|
|
|
|
| 160 |
autocast_ctx = torch.autocast("cuda", dtype=torch.float16) if torch.cuda.is_available() else contextlib.nullcontext()
|
| 161 |
with torch.inference_mode(), autocast_ctx:
|
| 162 |
for idx, frame in enumerate(frames):
|
| 163 |
+
if progress_callback:
|
| 164 |
+
progress_callback(f"π― SAM2 processing frame {idx+1}/{len(frames)}...")
|
| 165 |
+
|
| 166 |
h, w = frame.shape[:2]
|
| 167 |
# Downscale for inference if needed (β€1080 on the long side)
|
| 168 |
if max(h, w) > 1080:
|
|
|
|
| 218 |
logger.info(f"[sam2] multi-frame seed: N={len(masks_fullres)}, "
|
| 219 |
f"orig_size={orig_w}x{orig_h}, majority={required}/{len(masks_fullres)}")
|
| 220 |
|
| 221 |
+
if progress_callback:
|
| 222 |
+
progress_callback("π§Ή SAM2 complete - clearing GPU memory...")
|
| 223 |
+
|
| 224 |
# Offload SAM2 weights + free CUDA cache BEFORE MatAnyone
|
| 225 |
try:
|
| 226 |
if hasattr(predictor, "model"):
|
|
|
|
| 236 |
return vote
|
| 237 |
|
| 238 |
# --- Temporal Smoothing ---
|
| 239 |
+
def smooth_alpha_video(alpha_path, output_path, window_size=5, progress_callback=None):
|
| 240 |
"""Apply temporal smoothing to alpha masks"""
|
| 241 |
+
if progress_callback:
|
| 242 |
+
progress_callback("π¬ Smoothing alpha channel...")
|
| 243 |
+
|
| 244 |
cap = cv2.VideoCapture(alpha_path)
|
| 245 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 246 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
|
| 262 |
return output_path
|
| 263 |
|
| 264 |
# --- Transparent MOV Creation (FFmpeg) ---
|
| 265 |
+
def create_transparent_mov(foreground_path, alpha_path, output_dir, progress_callback=None):
|
| 266 |
"""Create transparent MOV using FFmpeg (reliable alpha handling)"""
|
| 267 |
+
if progress_callback:
|
| 268 |
+
progress_callback("ποΈ Creating transparent video with alpha channel...")
|
| 269 |
+
|
| 270 |
output_path = str(output_dir / "transparent.mov")
|
| 271 |
logger.info(f"[create_transparent_mov] Foreground: {foreground_path}, Alpha: {alpha_path}, Output: {output_path}")
|
| 272 |
try:
|
|
|
|
| 303 |
return None
|
| 304 |
|
| 305 |
# --- Stage 1: Transparent Video Creation (with watchdog for MatAnyone) ---
|
| 306 |
+
def stage1_create_transparent_video(input_file, sam2_predictor, matanyone_processor, mat_timeout_sec: int = 180, progress_callback=None):
|
| 307 |
"""Pipeline: SAM2 β MatAnyone β FFmpeg MOV (with watchdog timeout on MatAnyone)"""
|
| 308 |
logger.info("Stage 1: Creating transparent video")
|
| 309 |
+
|
| 310 |
+
if progress_callback:
|
| 311 |
+
progress_callback("β
Stage 1 initiated")
|
| 312 |
+
|
| 313 |
heartbeat_flag = {"running": True}
|
| 314 |
threading.Thread(target=heartbeat_monitor, args=(heartbeat_flag,), daemon=True).start()
|
| 315 |
try:
|
|
|
|
| 327 |
raise FileNotFoundError(f"Input not found: {input_path}")
|
| 328 |
|
| 329 |
# 1) Extract audio (best effort)
|
| 330 |
+
if progress_callback:
|
| 331 |
+
progress_callback("π΅ Extracting audio from video...")
|
| 332 |
+
|
| 333 |
audio_path = str(temp_dir / "audio.aac")
|
| 334 |
if extract_audio(input_path, audio_path):
|
| 335 |
try:
|
|
|
|
| 342 |
audio_path = None
|
| 343 |
|
| 344 |
# 2) Seed mask via SAM2 (multi-frame at original size)
|
| 345 |
+
mask = generate_first_frame_mask(input_path, sam2_predictor, progress_callback=progress_callback)
|
| 346 |
mask_path = str(temp_dir / "mask.png")
|
| 347 |
ok = cv2.imwrite(mask_path, mask)
|
| 348 |
if not ok or not os.path.exists(mask_path):
|
|
|
|
| 350 |
logger.info(f"[stage1] First-frame mask saved: {mask_path}")
|
| 351 |
|
| 352 |
# 3) MatAnyone with watchdog timeout
|
| 353 |
+
if progress_callback:
|
| 354 |
+
progress_callback("π¬ MatAnyone starting video matting...")
|
| 355 |
+
|
| 356 |
if torch.cuda.is_available():
|
| 357 |
try:
|
| 358 |
name = torch.cuda.get_device_name(0)
|
|
|
|
| 371 |
)
|
| 372 |
|
| 373 |
result_holder = {"ok": False, "fg": None, "alpha": None, "exc": None}
|
| 374 |
+
start_time = time.time()
|
| 375 |
|
| 376 |
def _run_matanyone():
|
| 377 |
try:
|
|
|
|
| 389 |
|
| 390 |
t = threading.Thread(target=_run_matanyone, daemon=True)
|
| 391 |
t.start()
|
| 392 |
+
|
| 393 |
+
# Poll with progress updates
|
| 394 |
+
while t.is_alive():
|
| 395 |
+
elapsed = int(time.time() - start_time)
|
| 396 |
+
if progress_callback:
|
| 397 |
+
progress_callback(f"π¬ MatAnyone processing... {elapsed}s elapsed")
|
| 398 |
+
t.join(timeout=5) # Check every 5 seconds
|
| 399 |
+
if elapsed > mat_timeout_sec:
|
| 400 |
+
break
|
| 401 |
|
| 402 |
if t.is_alive():
|
| 403 |
logger.error(f"[stage1] MatAnyone timed out after {mat_timeout_sec}s")
|
|
|
|
| 409 |
foreground_path, alpha_path = result_holder["fg"], result_holder["alpha"]
|
| 410 |
logger.info(f"[stage1] MatAnyone output: foreground={foreground_path}, alpha={alpha_path}")
|
| 411 |
|
| 412 |
+
if progress_callback:
|
| 413 |
+
progress_callback("β
MatAnyone complete")
|
| 414 |
+
|
| 415 |
if not foreground_path or not os.path.exists(foreground_path):
|
| 416 |
raise FileNotFoundError(f"MatAnyone foreground missing: {foreground_path}")
|
| 417 |
if not alpha_path or not os.path.exists(alpha_path):
|
|
|
|
| 425 |
logger.info(f"[stage1] Sizes: foreground={fg_sz} bytes, alpha={al_sz} bytes")
|
| 426 |
|
| 427 |
# 4) Temporal smoothing (alpha)
|
| 428 |
+
smoothed_alpha = smooth_alpha_video(alpha_path, str(temp_dir / "alpha_smoothed.mp4"), progress_callback=progress_callback)
|
| 429 |
if not os.path.exists(smoothed_alpha):
|
| 430 |
raise FileNotFoundError(f"Smoothed alpha missing: {smoothed_alpha}")
|
| 431 |
logger.info(f"[stage1] Smoothed alpha: {smoothed_alpha}")
|
| 432 |
|
| 433 |
# 5) Create transparent MOV
|
| 434 |
+
transparent_path = create_transparent_mov(foreground_path, smoothed_alpha, temp_dir, progress_callback=progress_callback)
|
| 435 |
if not transparent_path or not os.path.exists(transparent_path):
|
| 436 |
raise RuntimeError("Transparent MOV creation failed")
|
| 437 |
|
|
|
|
| 441 |
shutil.copyfile(transparent_path, persist_path)
|
| 442 |
logger.info(f"[stage1] Transparent video saved: {persist_path}")
|
| 443 |
|
| 444 |
+
if progress_callback:
|
| 445 |
+
progress_callback("β
Stage 1 complete")
|
| 446 |
+
|
| 447 |
# Return paths for Stage 2
|
| 448 |
return str(persist_path), audio_path
|
| 449 |
|
|
|
|
| 458 |
gc.collect()
|
| 459 |
|
| 460 |
# --- Stage 2: Background Compositing + Audio Muxing ---
|
| 461 |
+
def stage2_composite_background(transparent_video_path, audio_path, background, bg_type, progress_callback=None):
|
| 462 |
"""Composite transparent video with background and restore audio"""
|
| 463 |
logger.info("Stage 2: Compositing with background and audio")
|
| 464 |
+
|
| 465 |
+
if progress_callback:
|
| 466 |
+
progress_callback("π Stage 2 begun")
|
| 467 |
+
|
| 468 |
try:
|
| 469 |
cap = cv2.VideoCapture(transparent_video_path)
|
| 470 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 471 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 472 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 473 |
|
| 474 |
+
if progress_callback:
|
| 475 |
+
progress_callback("π¨ Preparing background...")
|
| 476 |
+
|
| 477 |
# Prepare background
|
| 478 |
if bg_type.lower() == "image" and isinstance(background, Image.Image):
|
| 479 |
bg_array = cv2.cvtColor(np.array(background.resize((width, height))), cv2.COLOR_RGB2BGR)
|
|
|
|
| 485 |
|
| 486 |
bg_resized = cv2.resize(bg_array, (width, height))
|
| 487 |
|
| 488 |
+
if progress_callback:
|
| 489 |
+
progress_callback("π¬ Compositing frames...")
|
| 490 |
+
|
| 491 |
# Composite frames (no audio yet)
|
| 492 |
temp_output_path = str(Path("tmp") / "final_video_no_audio.mp4")
|
| 493 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
|
|
|
| 505 |
cap.release()
|
| 506 |
out.release()
|
| 507 |
|
| 508 |
+
if progress_callback:
|
| 509 |
+
progress_callback("π΅ Restoring audio...")
|
| 510 |
+
|
| 511 |
# Mux audio back into the final video
|
| 512 |
final_output_path = str(Path("tmp") / "final_output.mp4")
|
| 513 |
if audio_path and os.path.exists(audio_path):
|
| 514 |
success = mux_audio(temp_output_path, audio_path, final_output_path)
|
| 515 |
if not success:
|
| 516 |
logger.warning("Audio muxing failed, returning video without audio")
|
| 517 |
+
if progress_callback:
|
| 518 |
+
progress_callback("β οΈ Stage 2 complete (no audio)")
|
| 519 |
return temp_output_path
|
| 520 |
os.remove(temp_output_path) # Clean up temp file
|
| 521 |
+
if progress_callback:
|
| 522 |
+
progress_callback("β
Stage 2 complete")
|
| 523 |
return final_output_path
|
| 524 |
else:
|
| 525 |
logger.warning("No audio found, returning video without audio")
|
| 526 |
+
if progress_callback:
|
| 527 |
+
progress_callback("β
Stage 2 complete (no audio)")
|
| 528 |
return temp_output_path
|
| 529 |
except Exception as e:
|
| 530 |
logger.error(f"Stage 2 failed: {e}", exc_info=True)
|
|
|
|
| 541 |
return False
|
| 542 |
|
| 543 |
# --- Initialize T4 tuning immediately if imported as module ---
|
| 544 |
+
setup_t4_environment()
|