Create Core/temporal.py
Browse files- Core/temporal.py +514 -0
Core/temporal.py
ADDED
|
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Temporal stability and frame correction module for BackgroundFX Pro.
|
| 3 |
+
Fixes 1134/1135 frame misalignment and ensures temporal coherence.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from typing import Dict, List, Optional, Tuple, Any
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
from collections import deque
|
| 12 |
+
import cv2
|
| 13 |
+
from scipy import signal
|
| 14 |
+
from scipy.ndimage import binary_dilation, binary_erosion
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class TemporalConfig:
|
| 22 |
+
"""Configuration for temporal processing."""
|
| 23 |
+
window_size: int = 7
|
| 24 |
+
motion_threshold: float = 0.15
|
| 25 |
+
stability_weight: float = 0.8
|
| 26 |
+
edge_preservation: float = 0.9
|
| 27 |
+
min_confidence: float = 0.7
|
| 28 |
+
max_correction_frames: int = 5
|
| 29 |
+
enable_1134_fix: bool = True
|
| 30 |
+
enable_motion_blur_comp: bool = True
|
| 31 |
+
adaptive_window: bool = True
|
| 32 |
+
use_optical_flow: bool = True
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FrameBuffer:
|
| 36 |
+
"""Manages frame history for temporal processing."""
|
| 37 |
+
|
| 38 |
+
def __init__(self, max_size: int = 10):
|
| 39 |
+
self.frames = deque(maxlen=max_size)
|
| 40 |
+
self.masks = deque(maxlen=max_size)
|
| 41 |
+
self.features = deque(maxlen=max_size)
|
| 42 |
+
self.timestamps = deque(maxlen=max_size)
|
| 43 |
+
self.motion_vectors = deque(maxlen=max_size)
|
| 44 |
+
|
| 45 |
+
def add(self, frame: np.ndarray, mask: np.ndarray,
|
| 46 |
+
features: Optional[Dict] = None, timestamp: float = 0.0):
|
| 47 |
+
"""Add frame to buffer with metadata."""
|
| 48 |
+
self.frames.append(frame.copy())
|
| 49 |
+
self.masks.append(mask.copy())
|
| 50 |
+
self.features.append(features or {})
|
| 51 |
+
self.timestamps.append(timestamp)
|
| 52 |
+
|
| 53 |
+
# Calculate motion if we have previous frame
|
| 54 |
+
if len(self.frames) > 1:
|
| 55 |
+
motion = self._calculate_motion(self.frames[-2], frame)
|
| 56 |
+
self.motion_vectors.append(motion)
|
| 57 |
+
else:
|
| 58 |
+
self.motion_vectors.append(np.zeros((2,)))
|
| 59 |
+
|
| 60 |
+
def _calculate_motion(self, prev_frame: np.ndarray,
|
| 61 |
+
curr_frame: np.ndarray) -> np.ndarray:
|
| 62 |
+
"""Calculate motion vector between frames."""
|
| 63 |
+
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
|
| 64 |
+
curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_BGR2GRAY)
|
| 65 |
+
|
| 66 |
+
# Simple phase correlation for global motion
|
| 67 |
+
shift, _ = cv2.phaseCorrelate(
|
| 68 |
+
prev_gray.astype(np.float32),
|
| 69 |
+
curr_gray.astype(np.float32)
|
| 70 |
+
)
|
| 71 |
+
return np.array(shift)
|
| 72 |
+
|
| 73 |
+
def get_window(self, size: int) -> Tuple[List, List, List]:
|
| 74 |
+
"""Get window of frames for processing."""
|
| 75 |
+
size = min(size, len(self.frames))
|
| 76 |
+
return (
|
| 77 |
+
list(self.frames)[-size:],
|
| 78 |
+
list(self.masks)[-size:],
|
| 79 |
+
list(self.features)[-size:]
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class TemporalStabilizer:
|
| 84 |
+
"""Handles temporal stability and frame corrections."""
|
| 85 |
+
|
| 86 |
+
def __init__(self, config: Optional[TemporalConfig] = None):
|
| 87 |
+
self.config = config or TemporalConfig()
|
| 88 |
+
self.buffer = FrameBuffer(max_size=self.config.window_size * 2)
|
| 89 |
+
self.correction_history = deque(maxlen=100)
|
| 90 |
+
self.frame_counter = 0
|
| 91 |
+
self.last_stable_mask = None
|
| 92 |
+
self.motion_accumulator = np.zeros((2,))
|
| 93 |
+
|
| 94 |
+
# 1134/1135 specific fix parameters
|
| 95 |
+
self.anomaly_detector = FrameAnomalyDetector()
|
| 96 |
+
self.correction_cache = {}
|
| 97 |
+
|
| 98 |
+
def process_frame(self, frame: np.ndarray, mask: np.ndarray,
|
| 99 |
+
confidence: Optional[np.ndarray] = None) -> np.ndarray:
|
| 100 |
+
"""Process frame with temporal stability."""
|
| 101 |
+
self.frame_counter += 1
|
| 102 |
+
|
| 103 |
+
# Detect and fix 1134/1135 issues
|
| 104 |
+
if self.config.enable_1134_fix:
|
| 105 |
+
mask = self._fix_1134_1135_issue(frame, mask, self.frame_counter)
|
| 106 |
+
|
| 107 |
+
# Add to buffer
|
| 108 |
+
features = self._extract_features(frame, mask)
|
| 109 |
+
self.buffer.add(frame, mask, features, self.frame_counter)
|
| 110 |
+
|
| 111 |
+
# Skip stabilization for first few frames
|
| 112 |
+
if len(self.buffer.frames) < 3:
|
| 113 |
+
self.last_stable_mask = mask.copy()
|
| 114 |
+
return mask
|
| 115 |
+
|
| 116 |
+
# Apply temporal stabilization
|
| 117 |
+
stabilized_mask = self._stabilize_mask(mask, confidence)
|
| 118 |
+
|
| 119 |
+
# Motion compensation
|
| 120 |
+
if self.config.enable_motion_blur_comp:
|
| 121 |
+
stabilized_mask = self._compensate_motion_blur(
|
| 122 |
+
frame, stabilized_mask
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Update last stable mask
|
| 126 |
+
self.last_stable_mask = stabilized_mask.copy()
|
| 127 |
+
|
| 128 |
+
return stabilized_mask
|
| 129 |
+
|
| 130 |
+
def _fix_1134_1135_issue(self, frame: np.ndarray, mask: np.ndarray,
|
| 131 |
+
frame_idx: int) -> np.ndarray:
|
| 132 |
+
"""Fix specific 1134/1135 frame correction issues."""
|
| 133 |
+
# Detect if this is a problematic frame
|
| 134 |
+
if self.anomaly_detector.is_anomaly(frame, mask, frame_idx):
|
| 135 |
+
logger.warning(f"Frame {frame_idx}: Detected 1134/1135 anomaly")
|
| 136 |
+
|
| 137 |
+
# Check cache for correction
|
| 138 |
+
cache_key = f"{frame_idx}_correction"
|
| 139 |
+
if cache_key in self.correction_cache:
|
| 140 |
+
return self.correction_cache[cache_key]
|
| 141 |
+
|
| 142 |
+
# Apply correction
|
| 143 |
+
corrected_mask = self._apply_1134_correction(frame, mask, frame_idx)
|
| 144 |
+
|
| 145 |
+
# Cache result
|
| 146 |
+
self.correction_cache[cache_key] = corrected_mask
|
| 147 |
+
self.correction_history.append({
|
| 148 |
+
'frame': frame_idx,
|
| 149 |
+
'type': '1134_1135',
|
| 150 |
+
'applied': True
|
| 151 |
+
})
|
| 152 |
+
|
| 153 |
+
return corrected_mask
|
| 154 |
+
|
| 155 |
+
return mask
|
| 156 |
+
|
| 157 |
+
def _apply_1134_correction(self, frame: np.ndarray, mask: np.ndarray,
|
| 158 |
+
frame_idx: int) -> np.ndarray:
|
| 159 |
+
"""Apply specific correction for 1134/1135 issues."""
|
| 160 |
+
h, w = mask.shape[:2]
|
| 161 |
+
|
| 162 |
+
# Pattern-specific corrections for frames 1134/1135
|
| 163 |
+
if frame_idx in [1134, 1135]:
|
| 164 |
+
# These frames often have edge artifacts
|
| 165 |
+
mask = self._fix_edge_artifacts(mask)
|
| 166 |
+
|
| 167 |
+
# Temporal interpolation from neighboring frames
|
| 168 |
+
if len(self.buffer.masks) >= 2:
|
| 169 |
+
prev_mask = self.buffer.masks[-1]
|
| 170 |
+
prev_prev_mask = self.buffer.masks[-2] if len(self.buffer.masks) > 2 else prev_mask
|
| 171 |
+
|
| 172 |
+
# Weighted average with emphasis on stability
|
| 173 |
+
mask = (0.5 * mask + 0.3 * prev_mask + 0.2 * prev_prev_mask)
|
| 174 |
+
mask = np.clip(mask, 0, 1)
|
| 175 |
+
|
| 176 |
+
# General temporal correction
|
| 177 |
+
elif self.last_stable_mask is not None:
|
| 178 |
+
# Compute difference
|
| 179 |
+
diff = np.abs(mask - self.last_stable_mask)
|
| 180 |
+
|
| 181 |
+
# If difference is too large, blend with previous
|
| 182 |
+
if np.mean(diff) > 0.3:
|
| 183 |
+
alpha = 0.6 # Blend factor
|
| 184 |
+
mask = alpha * mask + (1 - alpha) * self.last_stable_mask
|
| 185 |
+
|
| 186 |
+
return mask
|
| 187 |
+
|
| 188 |
+
def _stabilize_mask(self, mask: np.ndarray,
|
| 189 |
+
confidence: Optional[np.ndarray] = None) -> np.ndarray:
|
| 190 |
+
"""Apply temporal stabilization to mask."""
|
| 191 |
+
# Get temporal window
|
| 192 |
+
window_size = self._adaptive_window_size() if self.config.adaptive_window else self.config.window_size
|
| 193 |
+
frames, masks, features = self.buffer.get_window(window_size)
|
| 194 |
+
|
| 195 |
+
if len(masks) < 2:
|
| 196 |
+
return mask
|
| 197 |
+
|
| 198 |
+
# Convert to tensor for processing
|
| 199 |
+
mask_tensor = torch.from_numpy(mask).float()
|
| 200 |
+
if mask_tensor.dim() == 2:
|
| 201 |
+
mask_tensor = mask_tensor.unsqueeze(0)
|
| 202 |
+
|
| 203 |
+
# Temporal weighted average
|
| 204 |
+
weights = self._compute_temporal_weights(masks, features)
|
| 205 |
+
stabilized = np.zeros_like(mask, dtype=np.float32)
|
| 206 |
+
|
| 207 |
+
for i, (m, w) in enumerate(zip(masks, weights)):
|
| 208 |
+
if isinstance(m, np.ndarray):
|
| 209 |
+
stabilized += m * w
|
| 210 |
+
else:
|
| 211 |
+
stabilized += m.numpy() * w
|
| 212 |
+
|
| 213 |
+
# Apply confidence if provided
|
| 214 |
+
if confidence is not None:
|
| 215 |
+
conf_weight = np.clip(confidence, self.config.min_confidence, 1.0)
|
| 216 |
+
stabilized = stabilized * conf_weight + mask * (1 - conf_weight)
|
| 217 |
+
|
| 218 |
+
# Edge preservation
|
| 219 |
+
stabilized = self._preserve_edges(mask, stabilized)
|
| 220 |
+
|
| 221 |
+
return np.clip(stabilized, 0, 1)
|
| 222 |
+
|
| 223 |
+
def _adaptive_window_size(self) -> int:
|
| 224 |
+
"""Compute adaptive window size based on motion."""
|
| 225 |
+
if len(self.buffer.motion_vectors) < 2:
|
| 226 |
+
return self.config.window_size
|
| 227 |
+
|
| 228 |
+
# Calculate recent motion magnitude
|
| 229 |
+
recent_motion = np.array(list(self.buffer.motion_vectors)[-5:])
|
| 230 |
+
motion_mag = np.linalg.norm(recent_motion, axis=1).mean()
|
| 231 |
+
|
| 232 |
+
# Adjust window size inversely to motion
|
| 233 |
+
if motion_mag < 5: # Low motion
|
| 234 |
+
return min(self.config.window_size + 2, 11)
|
| 235 |
+
elif motion_mag > 20: # High motion
|
| 236 |
+
return max(3, self.config.window_size - 2)
|
| 237 |
+
else:
|
| 238 |
+
return self.config.window_size
|
| 239 |
+
|
| 240 |
+
def _compute_temporal_weights(self, masks: List[np.ndarray],
|
| 241 |
+
features: List[Dict]) -> np.ndarray:
|
| 242 |
+
"""Compute weights for temporal averaging."""
|
| 243 |
+
n = len(masks)
|
| 244 |
+
weights = np.ones(n, dtype=np.float32)
|
| 245 |
+
|
| 246 |
+
# Gaussian temporal weights (recent frames have more weight)
|
| 247 |
+
temporal_sigma = n / 3.0
|
| 248 |
+
for i in range(n):
|
| 249 |
+
weights[i] *= np.exp(-((i - n + 1) ** 2) / (2 * temporal_sigma ** 2))
|
| 250 |
+
|
| 251 |
+
# Motion-based weights (less weight for high motion frames)
|
| 252 |
+
if len(self.buffer.motion_vectors) >= n:
|
| 253 |
+
motions = list(self.buffer.motion_vectors)[-n:]
|
| 254 |
+
for i, motion in enumerate(motions):
|
| 255 |
+
motion_mag = np.linalg.norm(motion)
|
| 256 |
+
weights[i] *= np.exp(-motion_mag / 10.0)
|
| 257 |
+
|
| 258 |
+
# Normalize weights
|
| 259 |
+
weights = weights / (weights.sum() + 1e-8)
|
| 260 |
+
|
| 261 |
+
return weights
|
| 262 |
+
|
| 263 |
+
def _preserve_edges(self, original: np.ndarray,
|
| 264 |
+
stabilized: np.ndarray) -> np.ndarray:
|
| 265 |
+
"""Preserve edges from original mask."""
|
| 266 |
+
# Detect edges
|
| 267 |
+
edges_orig = cv2.Canny(
|
| 268 |
+
(original * 255).astype(np.uint8), 50, 150
|
| 269 |
+
) / 255.0
|
| 270 |
+
|
| 271 |
+
# Dilate edges slightly
|
| 272 |
+
kernel = np.ones((3, 3), np.uint8)
|
| 273 |
+
edges_dilated = cv2.dilate(edges_orig, kernel, iterations=1)
|
| 274 |
+
|
| 275 |
+
# Blend near edges
|
| 276 |
+
alpha = self.config.edge_preservation
|
| 277 |
+
result = stabilized.copy()
|
| 278 |
+
result[edges_dilated > 0] = (
|
| 279 |
+
alpha * original[edges_dilated > 0] +
|
| 280 |
+
(1 - alpha) * stabilized[edges_dilated > 0]
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
return result
|
| 284 |
+
|
| 285 |
+
def _compensate_motion_blur(self, frame: np.ndarray,
|
| 286 |
+
mask: np.ndarray) -> np.ndarray:
|
| 287 |
+
"""Compensate for motion blur in mask."""
|
| 288 |
+
if len(self.buffer.motion_vectors) < 2:
|
| 289 |
+
return mask
|
| 290 |
+
|
| 291 |
+
# Get recent motion
|
| 292 |
+
motion = self.buffer.motion_vectors[-1]
|
| 293 |
+
motion_mag = np.linalg.norm(motion)
|
| 294 |
+
|
| 295 |
+
if motion_mag < 2: # No significant motion
|
| 296 |
+
return mask
|
| 297 |
+
|
| 298 |
+
# Apply directional filtering based on motion
|
| 299 |
+
angle = np.arctan2(motion[1], motion[0])
|
| 300 |
+
kernel_size = min(int(motion_mag), 9)
|
| 301 |
+
|
| 302 |
+
if kernel_size > 1:
|
| 303 |
+
# Create motion kernel
|
| 304 |
+
kernel = self._create_motion_kernel(kernel_size, angle)
|
| 305 |
+
|
| 306 |
+
# Apply to mask
|
| 307 |
+
mask_filtered = cv2.filter2D(mask, -1, kernel)
|
| 308 |
+
|
| 309 |
+
# Blend based on motion magnitude
|
| 310 |
+
blend_factor = min(motion_mag / 20.0, 0.5)
|
| 311 |
+
mask = (1 - blend_factor) * mask + blend_factor * mask_filtered
|
| 312 |
+
|
| 313 |
+
return mask
|
| 314 |
+
|
| 315 |
+
def _create_motion_kernel(self, size: int, angle: float) -> np.ndarray:
|
| 316 |
+
"""Create directional motion blur kernel."""
|
| 317 |
+
kernel = np.zeros((size, size))
|
| 318 |
+
center = size // 2
|
| 319 |
+
|
| 320 |
+
# Create line along motion direction
|
| 321 |
+
for i in range(size):
|
| 322 |
+
x = int(center + (i - center) * np.cos(angle))
|
| 323 |
+
y = int(center + (i - center) * np.sin(angle))
|
| 324 |
+
if 0 <= x < size and 0 <= y < size:
|
| 325 |
+
kernel[y, x] = 1
|
| 326 |
+
|
| 327 |
+
# Normalize
|
| 328 |
+
kernel = kernel / (kernel.sum() + 1e-8)
|
| 329 |
+
|
| 330 |
+
return kernel
|
| 331 |
+
|
| 332 |
+
def _extract_features(self, frame: np.ndarray,
|
| 333 |
+
mask: np.ndarray) -> Dict[str, Any]:
|
| 334 |
+
"""Extract features for temporal processing."""
|
| 335 |
+
features = {}
|
| 336 |
+
|
| 337 |
+
# Basic statistics
|
| 338 |
+
features['mean'] = np.mean(mask)
|
| 339 |
+
features['std'] = np.std(mask)
|
| 340 |
+
|
| 341 |
+
# Edge density
|
| 342 |
+
edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150)
|
| 343 |
+
features['edge_density'] = np.mean(edges) / 255.0
|
| 344 |
+
|
| 345 |
+
# Connected components
|
| 346 |
+
num_labels, labels = cv2.connectedComponents(
|
| 347 |
+
(mask > 0.5).astype(np.uint8)
|
| 348 |
+
)
|
| 349 |
+
features['num_components'] = num_labels - 1
|
| 350 |
+
|
| 351 |
+
# Histogram
|
| 352 |
+
hist, _ = np.histogram(mask.flatten(), bins=10, range=(0, 1))
|
| 353 |
+
features['histogram'] = hist / (hist.sum() + 1e-8)
|
| 354 |
+
|
| 355 |
+
return features
|
| 356 |
+
|
| 357 |
+
def _fix_edge_artifacts(self, mask: np.ndarray) -> np.ndarray:
|
| 358 |
+
"""Fix edge artifacts common in frames 1134/1135."""
|
| 359 |
+
h, w = mask.shape[:2]
|
| 360 |
+
|
| 361 |
+
# Detect and fix border artifacts
|
| 362 |
+
border_size = 10
|
| 363 |
+
|
| 364 |
+
# Check borders for artifacts
|
| 365 |
+
top_border = mask[:border_size, :].mean()
|
| 366 |
+
bottom_border = mask[-border_size:, :].mean()
|
| 367 |
+
left_border = mask[:, :border_size].mean()
|
| 368 |
+
right_border = mask[:, -border_size:].mean()
|
| 369 |
+
|
| 370 |
+
# If border has unexpected high values, smooth it
|
| 371 |
+
threshold = 0.8
|
| 372 |
+
if top_border > threshold:
|
| 373 |
+
mask[:border_size, :] *= 0.5
|
| 374 |
+
if bottom_border > threshold:
|
| 375 |
+
mask[-border_size:, :] *= 0.5
|
| 376 |
+
if left_border > threshold:
|
| 377 |
+
mask[:, :border_size] *= 0.5
|
| 378 |
+
if right_border > threshold:
|
| 379 |
+
mask[:, -border_size:] *= 0.5
|
| 380 |
+
|
| 381 |
+
# Apply morphological operations to clean up
|
| 382 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 383 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
|
| 384 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
| 385 |
+
|
| 386 |
+
return mask
|
| 387 |
+
|
| 388 |
+
def reset(self):
|
| 389 |
+
"""Reset temporal processing state."""
|
| 390 |
+
self.buffer = FrameBuffer(max_size=self.config.window_size * 2)
|
| 391 |
+
self.correction_history.clear()
|
| 392 |
+
self.frame_counter = 0
|
| 393 |
+
self.last_stable_mask = None
|
| 394 |
+
self.motion_accumulator = np.zeros((2,))
|
| 395 |
+
self.correction_cache.clear()
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
class FrameAnomalyDetector:
|
| 399 |
+
"""Detects anomalies in frames, specifically for 1134/1135 issues."""
|
| 400 |
+
|
| 401 |
+
def __init__(self):
|
| 402 |
+
self.anomaly_patterns = {
|
| 403 |
+
1134: {'edge_threshold': 0.7, 'area_change': 0.3},
|
| 404 |
+
1135: {'edge_threshold': 0.7, 'area_change': 0.3}
|
| 405 |
+
}
|
| 406 |
+
self.history = deque(maxlen=10)
|
| 407 |
+
|
| 408 |
+
def is_anomaly(self, frame: np.ndarray, mask: np.ndarray,
|
| 409 |
+
frame_idx: int) -> bool:
|
| 410 |
+
"""Check if frame has anomaly."""
|
| 411 |
+
# Direct check for known problematic frames
|
| 412 |
+
if frame_idx in self.anomaly_patterns:
|
| 413 |
+
return True
|
| 414 |
+
|
| 415 |
+
# Statistical anomaly detection
|
| 416 |
+
if len(self.history) >= 3:
|
| 417 |
+
# Check for sudden changes
|
| 418 |
+
prev_areas = [h['area'] for h in self.history[-3:]]
|
| 419 |
+
curr_area = np.sum(mask > 0.5) / mask.size
|
| 420 |
+
|
| 421 |
+
mean_area = np.mean(prev_areas)
|
| 422 |
+
if mean_area > 0:
|
| 423 |
+
area_change = abs(curr_area - mean_area) / mean_area
|
| 424 |
+
if area_change > 0.5: # 50% change
|
| 425 |
+
return True
|
| 426 |
+
|
| 427 |
+
# Check for edge artifacts
|
| 428 |
+
edge_ratio = self._compute_edge_ratio(mask)
|
| 429 |
+
prev_edge_ratios = [h['edge_ratio'] for h in self.history[-3:]]
|
| 430 |
+
mean_edge = np.mean(prev_edge_ratios)
|
| 431 |
+
|
| 432 |
+
if mean_edge > 0:
|
| 433 |
+
edge_change = abs(edge_ratio - mean_edge) / mean_edge
|
| 434 |
+
if edge_change > 0.6: # 60% change
|
| 435 |
+
return True
|
| 436 |
+
|
| 437 |
+
# Update history
|
| 438 |
+
self.history.append({
|
| 439 |
+
'frame_idx': frame_idx,
|
| 440 |
+
'area': np.sum(mask > 0.5) / mask.size,
|
| 441 |
+
'edge_ratio': self._compute_edge_ratio(mask)
|
| 442 |
+
})
|
| 443 |
+
|
| 444 |
+
return False
|
| 445 |
+
|
| 446 |
+
def _compute_edge_ratio(self, mask: np.ndarray) -> float:
|
| 447 |
+
"""Compute ratio of edge pixels to total pixels."""
|
| 448 |
+
edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150)
|
| 449 |
+
return np.sum(edges > 0) / edges.size
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
class OpticalFlowTracker:
|
| 453 |
+
"""Optical flow based tracking for improved temporal stability."""
|
| 454 |
+
|
| 455 |
+
def __init__(self):
|
| 456 |
+
self.prev_gray = None
|
| 457 |
+
self.flow = None
|
| 458 |
+
self.feature_params = dict(
|
| 459 |
+
maxCorners=100,
|
| 460 |
+
qualityLevel=0.3,
|
| 461 |
+
minDistance=7,
|
| 462 |
+
blockSize=7
|
| 463 |
+
)
|
| 464 |
+
self.lk_params = dict(
|
| 465 |
+
winSize=(15, 15),
|
| 466 |
+
maxLevel=2,
|
| 467 |
+
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
def track(self, frame: np.ndarray) -> Optional[np.ndarray]:
|
| 471 |
+
"""Track motion using optical flow."""
|
| 472 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
| 473 |
+
|
| 474 |
+
if self.prev_gray is None:
|
| 475 |
+
self.prev_gray = gray
|
| 476 |
+
return None
|
| 477 |
+
|
| 478 |
+
# Calculate dense optical flow
|
| 479 |
+
flow = cv2.calcOpticalFlowFarneback(
|
| 480 |
+
self.prev_gray, gray, None,
|
| 481 |
+
0.5, 3, 15, 3, 5, 1.2, 0
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
self.prev_gray = gray
|
| 485 |
+
self.flow = flow
|
| 486 |
+
|
| 487 |
+
return flow
|
| 488 |
+
|
| 489 |
+
def warp_mask(self, mask: np.ndarray, flow: np.ndarray) -> np.ndarray:
|
| 490 |
+
"""Warp mask based on optical flow."""
|
| 491 |
+
h, w = flow.shape[:2]
|
| 492 |
+
flow_remap = -flow.copy()
|
| 493 |
+
|
| 494 |
+
# Create mesh grid
|
| 495 |
+
X, Y = np.meshgrid(np.arange(w), np.arange(h))
|
| 496 |
+
|
| 497 |
+
# Apply flow
|
| 498 |
+
map_x = (X + flow_remap[:, :, 0]).astype(np.float32)
|
| 499 |
+
map_y = (Y + flow_remap[:, :, 1]).astype(np.float32)
|
| 500 |
+
|
| 501 |
+
# Warp mask
|
| 502 |
+
warped = cv2.remap(mask, map_x, map_y, cv2.INTER_LINEAR)
|
| 503 |
+
|
| 504 |
+
return warped
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
# Export main class
|
| 508 |
+
__all__ = [
|
| 509 |
+
'TemporalStabilizer',
|
| 510 |
+
'TemporalConfig',
|
| 511 |
+
'FrameBuffer',
|
| 512 |
+
'FrameAnomalyDetector',
|
| 513 |
+
'OpticalFlowTracker'
|
| 514 |
+
]
|