Create api/batch_processor.py
Browse files- api/batch_processor.py +780 -0
api/batch_processor.py
ADDED
|
@@ -0,0 +1,780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Batch processing module for BackgroundFX Pro.
|
| 3 |
+
Handles efficient processing of multiple files with optimized resource management.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from typing import Dict, List, Optional, Tuple, Union, Callable, Any, Generator
|
| 11 |
+
from dataclasses import dataclass, field
|
| 12 |
+
from enum import Enum
|
| 13 |
+
import time
|
| 14 |
+
import threading
|
| 15 |
+
from queue import Queue, PriorityQueue, Empty
|
| 16 |
+
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
|
| 17 |
+
import multiprocessing as mp
|
| 18 |
+
import json
|
| 19 |
+
import hashlib
|
| 20 |
+
import pickle
|
| 21 |
+
import shutil
|
| 22 |
+
import tempfile
|
| 23 |
+
from datetime import datetime
|
| 24 |
+
import psutil
|
| 25 |
+
import mimetypes
|
| 26 |
+
|
| 27 |
+
from ..utils.logger import setup_logger
|
| 28 |
+
from ..utils.device import DeviceManager
|
| 29 |
+
from ..utils import TimeEstimator, MemoryMonitor
|
| 30 |
+
from .pipeline import ProcessingPipeline, PipelineConfig, PipelineResult, ProcessingMode
|
| 31 |
+
from .video_processor import VideoProcessorAPI, VideoStats
|
| 32 |
+
|
| 33 |
+
logger = setup_logger(__name__)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class BatchPriority(Enum):
|
| 37 |
+
"""Batch processing priority levels."""
|
| 38 |
+
LOW = 3
|
| 39 |
+
NORMAL = 2
|
| 40 |
+
HIGH = 1
|
| 41 |
+
URGENT = 0
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class FileType(Enum):
|
| 45 |
+
"""Supported file types."""
|
| 46 |
+
IMAGE = "image"
|
| 47 |
+
VIDEO = "video"
|
| 48 |
+
UNKNOWN = "unknown"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
@dataclass
|
| 52 |
+
class BatchItem:
|
| 53 |
+
"""Individual item in batch processing."""
|
| 54 |
+
id: str
|
| 55 |
+
input_path: str
|
| 56 |
+
output_path: str
|
| 57 |
+
file_type: FileType
|
| 58 |
+
priority: BatchPriority = BatchPriority.NORMAL
|
| 59 |
+
background: Optional[Union[str, np.ndarray]] = None
|
| 60 |
+
config_overrides: Dict[str, Any] = field(default_factory=dict)
|
| 61 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
| 62 |
+
retry_count: int = 0
|
| 63 |
+
max_retries: int = 3
|
| 64 |
+
status: str = "pending"
|
| 65 |
+
error: Optional[str] = None
|
| 66 |
+
result: Optional[Any] = None
|
| 67 |
+
processing_time: float = 0.0
|
| 68 |
+
|
| 69 |
+
def __lt__(self, other):
|
| 70 |
+
"""Compare items by priority for PriorityQueue."""
|
| 71 |
+
return self.priority.value < other.priority.value
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@dataclass
|
| 75 |
+
class BatchConfig:
|
| 76 |
+
"""Configuration for batch processing."""
|
| 77 |
+
# Processing settings
|
| 78 |
+
max_workers: int = mp.cpu_count()
|
| 79 |
+
use_multiprocessing: bool = False
|
| 80 |
+
chunk_size: int = 10
|
| 81 |
+
|
| 82 |
+
# Resource limits
|
| 83 |
+
max_memory_gb: float = 8.0
|
| 84 |
+
max_gpu_memory_gb: float = 4.0
|
| 85 |
+
cpu_limit_percent: float = 80.0
|
| 86 |
+
|
| 87 |
+
# File handling
|
| 88 |
+
input_dir: Optional[str] = None
|
| 89 |
+
output_dir: Optional[str] = None
|
| 90 |
+
recursive: bool = True
|
| 91 |
+
file_patterns: List[str] = field(default_factory=lambda: ["*.jpg", "*.png", "*.mp4", "*.avi"])
|
| 92 |
+
preserve_structure: bool = True
|
| 93 |
+
|
| 94 |
+
# Background settings
|
| 95 |
+
default_background: Optional[Union[str, np.ndarray]] = None
|
| 96 |
+
background_per_file: Dict[str, Union[str, np.ndarray]] = field(default_factory=dict)
|
| 97 |
+
|
| 98 |
+
# Quality settings
|
| 99 |
+
image_quality: int = 95
|
| 100 |
+
video_quality: str = "high"
|
| 101 |
+
maintain_resolution: bool = True
|
| 102 |
+
|
| 103 |
+
# Optimization
|
| 104 |
+
enable_caching: bool = True
|
| 105 |
+
cache_dir: Optional[str] = None
|
| 106 |
+
deduplicate: bool = True
|
| 107 |
+
|
| 108 |
+
# Progress and logging
|
| 109 |
+
progress_callback: Optional[Callable[[float, Dict], None]] = None
|
| 110 |
+
save_report: bool = True
|
| 111 |
+
report_path: Optional[str] = None
|
| 112 |
+
|
| 113 |
+
# Error handling
|
| 114 |
+
stop_on_error: bool = False
|
| 115 |
+
skip_existing: bool = True
|
| 116 |
+
|
| 117 |
+
# Pipeline config
|
| 118 |
+
pipeline_config: Optional[PipelineConfig] = None
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@dataclass
|
| 122 |
+
class BatchReport:
|
| 123 |
+
"""Batch processing report."""
|
| 124 |
+
start_time: datetime
|
| 125 |
+
end_time: Optional[datetime] = None
|
| 126 |
+
total_items: int = 0
|
| 127 |
+
processed_items: int = 0
|
| 128 |
+
successful_items: int = 0
|
| 129 |
+
failed_items: int = 0
|
| 130 |
+
skipped_items: int = 0
|
| 131 |
+
total_processing_time: float = 0.0
|
| 132 |
+
avg_processing_time: float = 0.0
|
| 133 |
+
total_input_size_mb: float = 0.0
|
| 134 |
+
total_output_size_mb: float = 0.0
|
| 135 |
+
compression_ratio: float = 1.0
|
| 136 |
+
errors: List[Dict[str, Any]] = field(default_factory=list)
|
| 137 |
+
warnings: List[str] = field(default_factory=list)
|
| 138 |
+
resource_usage: Dict[str, Any] = field(default_factory=dict)
|
| 139 |
+
quality_metrics: Dict[str, float] = field(default_factory=dict)
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class BatchProcessor:
|
| 143 |
+
"""High-performance batch processing engine."""
|
| 144 |
+
|
| 145 |
+
def __init__(self, config: Optional[BatchConfig] = None):
|
| 146 |
+
"""
|
| 147 |
+
Initialize batch processor.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
config: Batch processing configuration
|
| 151 |
+
"""
|
| 152 |
+
self.config = config or BatchConfig()
|
| 153 |
+
self.logger = setup_logger(f"{__name__}.BatchProcessor")
|
| 154 |
+
|
| 155 |
+
# Initialize components
|
| 156 |
+
self.device_manager = DeviceManager()
|
| 157 |
+
self.memory_monitor = MemoryMonitor()
|
| 158 |
+
self.time_estimator = TimeEstimator()
|
| 159 |
+
|
| 160 |
+
# Processing engines
|
| 161 |
+
self.pipeline = ProcessingPipeline(self.config.pipeline_config)
|
| 162 |
+
self.video_processor = VideoProcessorAPI()
|
| 163 |
+
|
| 164 |
+
# State management
|
| 165 |
+
self.is_processing = False
|
| 166 |
+
self.should_stop = False
|
| 167 |
+
self.current_item = None
|
| 168 |
+
|
| 169 |
+
# Queues
|
| 170 |
+
self.pending_queue = PriorityQueue()
|
| 171 |
+
self.processing_queue = Queue()
|
| 172 |
+
self.completed_queue = Queue()
|
| 173 |
+
|
| 174 |
+
# Worker pool
|
| 175 |
+
if self.config.use_multiprocessing:
|
| 176 |
+
self.executor = ProcessPoolExecutor(max_workers=self.config.max_workers)
|
| 177 |
+
else:
|
| 178 |
+
self.executor = ThreadPoolExecutor(max_workers=self.config.max_workers)
|
| 179 |
+
|
| 180 |
+
# Cache
|
| 181 |
+
self.cache_dir = Path(self.config.cache_dir or tempfile.mkdtemp(prefix="bgfx_cache_"))
|
| 182 |
+
self.cache_index = {}
|
| 183 |
+
|
| 184 |
+
# Statistics
|
| 185 |
+
self.report = BatchReport(start_time=datetime.now())
|
| 186 |
+
|
| 187 |
+
self.logger.info(f"BatchProcessor initialized with {self.config.max_workers} workers")
|
| 188 |
+
|
| 189 |
+
def process_directory(self,
|
| 190 |
+
input_dir: str,
|
| 191 |
+
output_dir: str,
|
| 192 |
+
background: Optional[Union[str, np.ndarray]] = None) -> BatchReport:
|
| 193 |
+
"""
|
| 194 |
+
Process all supported files in a directory.
|
| 195 |
+
|
| 196 |
+
Args:
|
| 197 |
+
input_dir: Input directory path
|
| 198 |
+
output_dir: Output directory path
|
| 199 |
+
background: Default background for all files
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
Batch processing report
|
| 203 |
+
"""
|
| 204 |
+
input_path = Path(input_dir)
|
| 205 |
+
output_path = Path(output_dir)
|
| 206 |
+
|
| 207 |
+
if not input_path.exists():
|
| 208 |
+
raise ValueError(f"Input directory does not exist: {input_dir}")
|
| 209 |
+
|
| 210 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 211 |
+
|
| 212 |
+
# Collect files
|
| 213 |
+
items = self._collect_files(input_path, output_path, background)
|
| 214 |
+
|
| 215 |
+
if not items:
|
| 216 |
+
self.logger.warning("No files found to process")
|
| 217 |
+
return self.report
|
| 218 |
+
|
| 219 |
+
self.logger.info(f"Found {len(items)} files to process")
|
| 220 |
+
|
| 221 |
+
# Process batch
|
| 222 |
+
return self.process_batch(items)
|
| 223 |
+
|
| 224 |
+
def _collect_files(self,
|
| 225 |
+
input_path: Path,
|
| 226 |
+
output_path: Path,
|
| 227 |
+
background: Optional[Union[str, np.ndarray]]) -> List[BatchItem]:
|
| 228 |
+
"""Collect all files to process from directory."""
|
| 229 |
+
items = []
|
| 230 |
+
|
| 231 |
+
# Determine search method
|
| 232 |
+
if self.config.recursive:
|
| 233 |
+
file_iterator = input_path.rglob
|
| 234 |
+
else:
|
| 235 |
+
file_iterator = input_path.glob
|
| 236 |
+
|
| 237 |
+
# Collect files matching patterns
|
| 238 |
+
for pattern in self.config.file_patterns:
|
| 239 |
+
for file_path in file_iterator(pattern):
|
| 240 |
+
if file_path.is_file():
|
| 241 |
+
# Determine output path
|
| 242 |
+
if self.config.preserve_structure:
|
| 243 |
+
relative_path = file_path.relative_to(input_path)
|
| 244 |
+
output_file = output_path / relative_path.parent / f"{file_path.stem}_processed{file_path.suffix}"
|
| 245 |
+
else:
|
| 246 |
+
output_file = output_path / f"{file_path.stem}_processed{file_path.suffix}"
|
| 247 |
+
|
| 248 |
+
# Skip if exists and configured to skip
|
| 249 |
+
if self.config.skip_existing and output_file.exists():
|
| 250 |
+
self.report.skipped_items += 1
|
| 251 |
+
continue
|
| 252 |
+
|
| 253 |
+
# Determine file type
|
| 254 |
+
file_type = self._detect_file_type(str(file_path))
|
| 255 |
+
|
| 256 |
+
# Create batch item
|
| 257 |
+
item = BatchItem(
|
| 258 |
+
id=self._generate_item_id(file_path),
|
| 259 |
+
input_path=str(file_path),
|
| 260 |
+
output_path=str(output_file),
|
| 261 |
+
file_type=file_type,
|
| 262 |
+
background=self.config.background_per_file.get(
|
| 263 |
+
str(file_path),
|
| 264 |
+
background or self.config.default_background
|
| 265 |
+
)
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
items.append(item)
|
| 269 |
+
|
| 270 |
+
return items
|
| 271 |
+
|
| 272 |
+
def process_batch(self, items: List[BatchItem]) -> BatchReport:
|
| 273 |
+
"""
|
| 274 |
+
Process a batch of items.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
items: List of batch items to process
|
| 278 |
+
|
| 279 |
+
Returns:
|
| 280 |
+
Batch processing report
|
| 281 |
+
"""
|
| 282 |
+
self.is_processing = True
|
| 283 |
+
self.report = BatchReport(start_time=datetime.now())
|
| 284 |
+
self.report.total_items = len(items)
|
| 285 |
+
|
| 286 |
+
try:
|
| 287 |
+
# Add items to queue
|
| 288 |
+
for item in items:
|
| 289 |
+
self.pending_queue.put(item)
|
| 290 |
+
|
| 291 |
+
# Check for duplicates if enabled
|
| 292 |
+
if self.config.deduplicate:
|
| 293 |
+
items = self._deduplicate_items(items)
|
| 294 |
+
|
| 295 |
+
# Start processing
|
| 296 |
+
self._process_items(items)
|
| 297 |
+
|
| 298 |
+
finally:
|
| 299 |
+
self.is_processing = False
|
| 300 |
+
self.report.end_time = datetime.now()
|
| 301 |
+
self.report.total_processing_time = (
|
| 302 |
+
self.report.end_time - self.report.start_time
|
| 303 |
+
).total_seconds()
|
| 304 |
+
|
| 305 |
+
if self.report.processed_items > 0:
|
| 306 |
+
self.report.avg_processing_time = (
|
| 307 |
+
self.report.total_processing_time / self.report.processed_items
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
# Save report if configured
|
| 311 |
+
if self.config.save_report:
|
| 312 |
+
self._save_report()
|
| 313 |
+
|
| 314 |
+
return self.report
|
| 315 |
+
|
| 316 |
+
def _process_items(self, items: List[BatchItem]):
|
| 317 |
+
"""Process all items in the batch."""
|
| 318 |
+
# Chunk items for better resource management
|
| 319 |
+
chunks = [items[i:i + self.config.chunk_size]
|
| 320 |
+
for i in range(0, len(items), self.config.chunk_size)]
|
| 321 |
+
|
| 322 |
+
for chunk_idx, chunk in enumerate(chunks):
|
| 323 |
+
if self.should_stop:
|
| 324 |
+
break
|
| 325 |
+
|
| 326 |
+
# Check resource availability
|
| 327 |
+
self._wait_for_resources()
|
| 328 |
+
|
| 329 |
+
# Process chunk
|
| 330 |
+
futures = []
|
| 331 |
+
for item in chunk:
|
| 332 |
+
if self.should_stop:
|
| 333 |
+
break
|
| 334 |
+
|
| 335 |
+
future = self.executor.submit(self._process_single_item, item)
|
| 336 |
+
futures.append((future, item))
|
| 337 |
+
|
| 338 |
+
# Collect results
|
| 339 |
+
for future, item in futures:
|
| 340 |
+
try:
|
| 341 |
+
result = future.result(timeout=300) # 5 minute timeout
|
| 342 |
+
item.result = result
|
| 343 |
+
item.status = "completed" if result else "failed"
|
| 344 |
+
|
| 345 |
+
if result:
|
| 346 |
+
self.report.successful_items += 1
|
| 347 |
+
else:
|
| 348 |
+
self.report.failed_items += 1
|
| 349 |
+
|
| 350 |
+
except Exception as e:
|
| 351 |
+
self.logger.error(f"Processing failed for {item.id}: {e}")
|
| 352 |
+
item.status = "failed"
|
| 353 |
+
item.error = str(e)
|
| 354 |
+
self.report.failed_items += 1
|
| 355 |
+
|
| 356 |
+
if self.config.stop_on_error:
|
| 357 |
+
self.should_stop = True
|
| 358 |
+
break
|
| 359 |
+
|
| 360 |
+
finally:
|
| 361 |
+
self.report.processed_items += 1
|
| 362 |
+
|
| 363 |
+
# Progress callback
|
| 364 |
+
if self.config.progress_callback:
|
| 365 |
+
progress = self.report.processed_items / self.report.total_items
|
| 366 |
+
self.config.progress_callback(progress, {
|
| 367 |
+
'current_item': item.id,
|
| 368 |
+
'processed': self.report.processed_items,
|
| 369 |
+
'total': self.report.total_items,
|
| 370 |
+
'successful': self.report.successful_items,
|
| 371 |
+
'failed': self.report.failed_items
|
| 372 |
+
})
|
| 373 |
+
|
| 374 |
+
def _process_single_item(self, item: BatchItem) -> bool:
|
| 375 |
+
"""
|
| 376 |
+
Process a single batch item.
|
| 377 |
+
|
| 378 |
+
Args:
|
| 379 |
+
item: Batch item to process
|
| 380 |
+
|
| 381 |
+
Returns:
|
| 382 |
+
True if successful
|
| 383 |
+
"""
|
| 384 |
+
start_time = time.time()
|
| 385 |
+
|
| 386 |
+
try:
|
| 387 |
+
# Check cache
|
| 388 |
+
if self.config.enable_caching:
|
| 389 |
+
cached_result = self._check_cache(item)
|
| 390 |
+
if cached_result is not None:
|
| 391 |
+
self._save_cached_result(item, cached_result)
|
| 392 |
+
item.processing_time = time.time() - start_time
|
| 393 |
+
return True
|
| 394 |
+
|
| 395 |
+
# Process based on file type
|
| 396 |
+
if item.file_type == FileType.IMAGE:
|
| 397 |
+
success = self._process_image(item)
|
| 398 |
+
elif item.file_type == FileType.VIDEO:
|
| 399 |
+
success = self._process_video(item)
|
| 400 |
+
else:
|
| 401 |
+
raise ValueError(f"Unsupported file type: {item.file_type}")
|
| 402 |
+
|
| 403 |
+
# Cache result if successful
|
| 404 |
+
if success and self.config.enable_caching:
|
| 405 |
+
self._cache_result(item)
|
| 406 |
+
|
| 407 |
+
item.processing_time = time.time() - start_time
|
| 408 |
+
|
| 409 |
+
# Update file size statistics
|
| 410 |
+
self._update_size_stats(item)
|
| 411 |
+
|
| 412 |
+
return success
|
| 413 |
+
|
| 414 |
+
except Exception as e:
|
| 415 |
+
self.logger.error(f"Error processing {item.id}: {e}")
|
| 416 |
+
item.error = str(e)
|
| 417 |
+
|
| 418 |
+
# Retry logic
|
| 419 |
+
if item.retry_count < item.max_retries:
|
| 420 |
+
item.retry_count += 1
|
| 421 |
+
self.logger.info(f"Retrying {item.id} (attempt {item.retry_count}/{item.max_retries})")
|
| 422 |
+
return self._process_single_item(item)
|
| 423 |
+
|
| 424 |
+
return False
|
| 425 |
+
|
| 426 |
+
def _process_image(self, item: BatchItem) -> bool:
|
| 427 |
+
"""Process an image file."""
|
| 428 |
+
try:
|
| 429 |
+
# Load image
|
| 430 |
+
image = cv2.imread(item.input_path)
|
| 431 |
+
if image is None:
|
| 432 |
+
raise ValueError(f"Cannot load image: {item.input_path}")
|
| 433 |
+
|
| 434 |
+
# Apply config overrides
|
| 435 |
+
pipeline_config = self.config.pipeline_config or PipelineConfig()
|
| 436 |
+
for key, value in item.config_overrides.items():
|
| 437 |
+
if hasattr(pipeline_config, key):
|
| 438 |
+
setattr(pipeline_config, key, value)
|
| 439 |
+
|
| 440 |
+
# Process through pipeline
|
| 441 |
+
result = self.pipeline.process_image(
|
| 442 |
+
image,
|
| 443 |
+
item.background
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
if result.success and result.output_image is not None:
|
| 447 |
+
# Create output directory
|
| 448 |
+
output_path = Path(item.output_path)
|
| 449 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 450 |
+
|
| 451 |
+
# Save result
|
| 452 |
+
if output_path.suffix.lower() in ['.jpg', '.jpeg']:
|
| 453 |
+
cv2.imwrite(
|
| 454 |
+
str(output_path),
|
| 455 |
+
result.output_image,
|
| 456 |
+
[cv2.IMWRITE_JPEG_QUALITY, self.config.image_quality]
|
| 457 |
+
)
|
| 458 |
+
else:
|
| 459 |
+
cv2.imwrite(str(output_path), result.output_image)
|
| 460 |
+
|
| 461 |
+
# Store quality metrics
|
| 462 |
+
item.metadata['quality_score'] = result.quality_score
|
| 463 |
+
self._update_quality_metrics(result.quality_score)
|
| 464 |
+
|
| 465 |
+
return True
|
| 466 |
+
|
| 467 |
+
return False
|
| 468 |
+
|
| 469 |
+
except Exception as e:
|
| 470 |
+
self.logger.error(f"Image processing failed for {item.input_path}: {e}")
|
| 471 |
+
raise
|
| 472 |
+
|
| 473 |
+
def _process_video(self, item: BatchItem) -> bool:
|
| 474 |
+
"""Process a video file."""
|
| 475 |
+
try:
|
| 476 |
+
# Create output directory
|
| 477 |
+
output_path = Path(item.output_path)
|
| 478 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 479 |
+
|
| 480 |
+
# Process video
|
| 481 |
+
stats = self.video_processor.process_video(
|
| 482 |
+
item.input_path,
|
| 483 |
+
str(output_path),
|
| 484 |
+
item.background
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
# Store statistics
|
| 488 |
+
item.metadata['video_stats'] = {
|
| 489 |
+
'frames_processed': stats.frames_processed,
|
| 490 |
+
'frames_dropped': stats.frames_dropped,
|
| 491 |
+
'processing_fps': stats.processing_fps,
|
| 492 |
+
'avg_quality': stats.avg_quality_score
|
| 493 |
+
}
|
| 494 |
+
|
| 495 |
+
self._update_quality_metrics(stats.avg_quality_score)
|
| 496 |
+
|
| 497 |
+
return stats.frames_processed > 0
|
| 498 |
+
|
| 499 |
+
except Exception as e:
|
| 500 |
+
self.logger.error(f"Video processing failed for {item.input_path}: {e}")
|
| 501 |
+
raise
|
| 502 |
+
|
| 503 |
+
def _detect_file_type(self, file_path: str) -> FileType:
|
| 504 |
+
"""Detect file type from path."""
|
| 505 |
+
mime_type, _ = mimetypes.guess_type(file_path)
|
| 506 |
+
|
| 507 |
+
if mime_type:
|
| 508 |
+
if mime_type.startswith('image/'):
|
| 509 |
+
return FileType.IMAGE
|
| 510 |
+
elif mime_type.startswith('video/'):
|
| 511 |
+
return FileType.VIDEO
|
| 512 |
+
|
| 513 |
+
# Fallback to extension
|
| 514 |
+
ext = Path(file_path).suffix.lower()
|
| 515 |
+
if ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp']:
|
| 516 |
+
return FileType.IMAGE
|
| 517 |
+
elif ext in ['.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv']:
|
| 518 |
+
return FileType.VIDEO
|
| 519 |
+
|
| 520 |
+
return FileType.UNKNOWN
|
| 521 |
+
|
| 522 |
+
def _generate_item_id(self, file_path: Path) -> str:
|
| 523 |
+
"""Generate unique ID for batch item."""
|
| 524 |
+
# Combine path and timestamp for uniqueness
|
| 525 |
+
content = f"{file_path}{time.time()}"
|
| 526 |
+
return hashlib.md5(content.encode()).hexdigest()[:16]
|
| 527 |
+
|
| 528 |
+
def _deduplicate_items(self, items: List[BatchItem]) -> List[BatchItem]:
|
| 529 |
+
"""Remove duplicate items based on file content hash."""
|
| 530 |
+
seen_hashes = set()
|
| 531 |
+
unique_items = []
|
| 532 |
+
|
| 533 |
+
for item in items:
|
| 534 |
+
try:
|
| 535 |
+
file_hash = self._calculate_file_hash(item.input_path)
|
| 536 |
+
|
| 537 |
+
if file_hash not in seen_hashes:
|
| 538 |
+
seen_hashes.add(file_hash)
|
| 539 |
+
unique_items.append(item)
|
| 540 |
+
else:
|
| 541 |
+
self.logger.info(f"Skipping duplicate: {item.input_path}")
|
| 542 |
+
self.report.skipped_items += 1
|
| 543 |
+
|
| 544 |
+
except Exception as e:
|
| 545 |
+
self.logger.warning(f"Cannot calculate hash for {item.input_path}: {e}")
|
| 546 |
+
unique_items.append(item)
|
| 547 |
+
|
| 548 |
+
return unique_items
|
| 549 |
+
|
| 550 |
+
def _calculate_file_hash(self, file_path: str, chunk_size: int = 8192) -> str:
|
| 551 |
+
"""Calculate MD5 hash of file."""
|
| 552 |
+
hasher = hashlib.md5()
|
| 553 |
+
|
| 554 |
+
with open(file_path, 'rb') as f:
|
| 555 |
+
while chunk:= f.read(chunk_size):
|
| 556 |
+
hasher.update(chunk)
|
| 557 |
+
|
| 558 |
+
return hasher.hexdigest()
|
| 559 |
+
|
| 560 |
+
def _check_cache(self, item: BatchItem) -> Optional[Any]:
|
| 561 |
+
"""Check if item result is cached."""
|
| 562 |
+
cache_key = self._get_cache_key(item)
|
| 563 |
+
cache_file = self.cache_dir / f"{cache_key}.pkl"
|
| 564 |
+
|
| 565 |
+
if cache_file.exists():
|
| 566 |
+
try:
|
| 567 |
+
with open(cache_file, 'rb') as f:
|
| 568 |
+
cached_data = pickle.load(f)
|
| 569 |
+
|
| 570 |
+
# Verify cache validity
|
| 571 |
+
if cached_data.get('input_hash') == self._calculate_file_hash(item.input_path):
|
| 572 |
+
self.logger.info(f"Using cached result for {item.id}")
|
| 573 |
+
return cached_data['result']
|
| 574 |
+
|
| 575 |
+
except Exception as e:
|
| 576 |
+
self.logger.warning(f"Cache read failed: {e}")
|
| 577 |
+
|
| 578 |
+
return None
|
| 579 |
+
|
| 580 |
+
def _cache_result(self, item: BatchItem):
|
| 581 |
+
"""Cache processing result."""
|
| 582 |
+
try:
|
| 583 |
+
cache_key = self._get_cache_key(item)
|
| 584 |
+
cache_file = self.cache_dir / f"{cache_key}.pkl"
|
| 585 |
+
|
| 586 |
+
# Read processed file
|
| 587 |
+
with open(item.output_path, 'rb') as f:
|
| 588 |
+
result_data = f.read()
|
| 589 |
+
|
| 590 |
+
# Cache data
|
| 591 |
+
cache_data = {
|
| 592 |
+
'input_hash': self._calculate_file_hash(item.input_path),
|
| 593 |
+
'result': result_data,
|
| 594 |
+
'metadata': item.metadata,
|
| 595 |
+
'timestamp': time.time()
|
| 596 |
+
}
|
| 597 |
+
|
| 598 |
+
with open(cache_file, 'wb') as f:
|
| 599 |
+
pickle.dump(cache_data, f)
|
| 600 |
+
|
| 601 |
+
except Exception as e:
|
| 602 |
+
self.logger.warning(f"Cache write failed: {e}")
|
| 603 |
+
|
| 604 |
+
def _save_cached_result(self, item: BatchItem, cached_data: bytes):
|
| 605 |
+
"""Save cached result to output file."""
|
| 606 |
+
output_path = Path(item.output_path)
|
| 607 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 608 |
+
|
| 609 |
+
with open(output_path, 'wb') as f:
|
| 610 |
+
f.write(cached_data)
|
| 611 |
+
|
| 612 |
+
def _get_cache_key(self, item: BatchItem) -> str:
|
| 613 |
+
"""Generate cache key for item."""
|
| 614 |
+
# Include relevant parameters in cache key
|
| 615 |
+
key_parts = [
|
| 616 |
+
item.input_path,
|
| 617 |
+
str(item.background) if item.background is not None else "none",
|
| 618 |
+
json.dumps(item.config_overrides, sort_keys=True)
|
| 619 |
+
]
|
| 620 |
+
|
| 621 |
+
key_string = "|".join(key_parts)
|
| 622 |
+
return hashlib.md5(key_string.encode()).hexdigest()
|
| 623 |
+
|
| 624 |
+
def _wait_for_resources(self):
|
| 625 |
+
"""Wait for sufficient resources before processing."""
|
| 626 |
+
while True:
|
| 627 |
+
# Check CPU usage
|
| 628 |
+
cpu_percent = psutil.cpu_percent(interval=1)
|
| 629 |
+
if cpu_percent > self.config.cpu_limit_percent:
|
| 630 |
+
self.logger.debug(f"CPU usage high ({cpu_percent}%), waiting...")
|
| 631 |
+
time.sleep(2)
|
| 632 |
+
continue
|
| 633 |
+
|
| 634 |
+
# Check memory
|
| 635 |
+
memory = psutil.virtual_memory()
|
| 636 |
+
memory_gb = (memory.total - memory.available) / (1024**3)
|
| 637 |
+
if memory_gb > self.config.max_memory_gb:
|
| 638 |
+
self.logger.debug(f"Memory usage high ({memory_gb:.1f}GB), waiting...")
|
| 639 |
+
time.sleep(2)
|
| 640 |
+
continue
|
| 641 |
+
|
| 642 |
+
# Resources available
|
| 643 |
+
break
|
| 644 |
+
|
| 645 |
+
def _update_size_stats(self, item: BatchItem):
|
| 646 |
+
"""Update file size statistics."""
|
| 647 |
+
try:
|
| 648 |
+
input_size = os.path.getsize(item.input_path) / (1024**2) # MB
|
| 649 |
+
output_size = os.path.getsize(item.output_path) / (1024**2) # MB
|
| 650 |
+
|
| 651 |
+
self.report.total_input_size_mb += input_size
|
| 652 |
+
self.report.total_output_size_mb += output_size
|
| 653 |
+
|
| 654 |
+
if self.report.total_input_size_mb > 0:
|
| 655 |
+
self.report.compression_ratio = (
|
| 656 |
+
self.report.total_output_size_mb / self.report.total_input_size_mb
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
except Exception as e:
|
| 660 |
+
self.logger.warning(f"Cannot update size stats: {e}")
|
| 661 |
+
|
| 662 |
+
def _update_quality_metrics(self, quality_score: float):
|
| 663 |
+
"""Update quality metrics in report."""
|
| 664 |
+
if 'scores' not in self.report.quality_metrics:
|
| 665 |
+
self.report.quality_metrics['scores'] = []
|
| 666 |
+
|
| 667 |
+
self.report.quality_metrics['scores'].append(quality_score)
|
| 668 |
+
|
| 669 |
+
scores = self.report.quality_metrics['scores']
|
| 670 |
+
self.report.quality_metrics['avg_quality'] = np.mean(scores)
|
| 671 |
+
self.report.quality_metrics['min_quality'] = np.min(scores)
|
| 672 |
+
self.report.quality_metrics['max_quality'] = np.max(scores)
|
| 673 |
+
self.report.quality_metrics['std_quality'] = np.std(scores)
|
| 674 |
+
|
| 675 |
+
def _save_report(self):
|
| 676 |
+
"""Save processing report to file."""
|
| 677 |
+
try:
|
| 678 |
+
report_path = self.config.report_path
|
| 679 |
+
if not report_path:
|
| 680 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 681 |
+
report_path = f"batch_report_{timestamp}.json"
|
| 682 |
+
|
| 683 |
+
report_dict = {
|
| 684 |
+
'start_time': self.report.start_time.isoformat(),
|
| 685 |
+
'end_time': self.report.end_time.isoformat() if self.report.end_time else None,
|
| 686 |
+
'total_items': self.report.total_items,
|
| 687 |
+
'processed_items': self.report.processed_items,
|
| 688 |
+
'successful_items': self.report.successful_items,
|
| 689 |
+
'failed_items': self.report.failed_items,
|
| 690 |
+
'skipped_items': self.report.skipped_items,
|
| 691 |
+
'total_processing_time': self.report.total_processing_time,
|
| 692 |
+
'avg_processing_time': self.report.avg_processing_time,
|
| 693 |
+
'total_input_size_mb': self.report.total_input_size_mb,
|
| 694 |
+
'total_output_size_mb': self.report.total_output_size_mb,
|
| 695 |
+
'compression_ratio': self.report.compression_ratio,
|
| 696 |
+
'quality_metrics': self.report.quality_metrics,
|
| 697 |
+
'errors': self.report.errors,
|
| 698 |
+
'warnings': self.report.warnings
|
| 699 |
+
}
|
| 700 |
+
|
| 701 |
+
with open(report_path, 'w') as f:
|
| 702 |
+
json.dump(report_dict, f, indent=2)
|
| 703 |
+
|
| 704 |
+
self.logger.info(f"Report saved to {report_path}")
|
| 705 |
+
|
| 706 |
+
except Exception as e:
|
| 707 |
+
self.logger.error(f"Failed to save report: {e}")
|
| 708 |
+
|
| 709 |
+
def process_with_pattern(self,
|
| 710 |
+
pattern: str,
|
| 711 |
+
output_template: str,
|
| 712 |
+
background: Optional[Union[str, np.ndarray]] = None) -> BatchReport:
|
| 713 |
+
"""
|
| 714 |
+
Process files matching a pattern with template-based output.
|
| 715 |
+
|
| 716 |
+
Args:
|
| 717 |
+
pattern: File pattern (e.g., "images/*.jpg")
|
| 718 |
+
output_template: Output path template (e.g., "output/{name}_bg.{ext}")
|
| 719 |
+
background: Background for processing
|
| 720 |
+
|
| 721 |
+
Returns:
|
| 722 |
+
Batch processing report
|
| 723 |
+
"""
|
| 724 |
+
items = []
|
| 725 |
+
|
| 726 |
+
for file_path in Path().glob(pattern):
|
| 727 |
+
if file_path.is_file():
|
| 728 |
+
# Parse template
|
| 729 |
+
output_path = output_template.format(
|
| 730 |
+
name=file_path.stem,
|
| 731 |
+
ext=file_path.suffix[1:],
|
| 732 |
+
dir=file_path.parent,
|
| 733 |
+
date=datetime.now().strftime("%Y%m%d")
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
item = BatchItem(
|
| 737 |
+
id=self._generate_item_id(file_path),
|
| 738 |
+
input_path=str(file_path),
|
| 739 |
+
output_path=output_path,
|
| 740 |
+
file_type=self._detect_file_type(str(file_path)),
|
| 741 |
+
background=background
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
items.append(item)
|
| 745 |
+
|
| 746 |
+
return self.process_batch(items)
|
| 747 |
+
|
| 748 |
+
def stop_processing(self):
|
| 749 |
+
"""Stop batch processing."""
|
| 750 |
+
self.should_stop = True
|
| 751 |
+
self.logger.info("Stopping batch processing...")
|
| 752 |
+
|
| 753 |
+
def cleanup(self):
|
| 754 |
+
"""Clean up resources."""
|
| 755 |
+
self.stop_processing()
|
| 756 |
+
self.executor.shutdown(wait=True)
|
| 757 |
+
|
| 758 |
+
# Clean cache if temporary
|
| 759 |
+
if self.config.cache_dir is None:
|
| 760 |
+
shutil.rmtree(self.cache_dir, ignore_errors=True)
|
| 761 |
+
|
| 762 |
+
self.logger.info("Batch processor cleanup complete")
|
| 763 |
+
|
| 764 |
+
def get_status(self) -> Dict[str, Any]:
|
| 765 |
+
"""Get current processing status."""
|
| 766 |
+
return {
|
| 767 |
+
'is_processing': self.is_processing,
|
| 768 |
+
'total_items': self.report.total_items,
|
| 769 |
+
'processed_items': self.report.processed_items,
|
| 770 |
+
'successful_items': self.report.successful_items,
|
| 771 |
+
'failed_items': self.report.failed_items,
|
| 772 |
+
'skipped_items': self.report.skipped_items,
|
| 773 |
+
'current_item': self.current_item.id if self.current_item else None,
|
| 774 |
+
'progress': (self.report.processed_items / self.report.total_items * 100
|
| 775 |
+
if self.report.total_items > 0 else 0),
|
| 776 |
+
'estimated_time_remaining': self.time_estimator.estimate_remaining(
|
| 777 |
+
self.report.processed_items,
|
| 778 |
+
self.report.total_items
|
| 779 |
+
) if self.is_processing else None
|
| 780 |
+
}
|