Update core/app.py
Browse files- core/app.py +97 -69
core/app.py
CHANGED
|
@@ -4,7 +4,36 @@
|
|
| 4 |
Refactored modular architecture - orchestrates specialized components
|
| 5 |
"""
|
| 6 |
|
|
|
|
| 7 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import logging
|
| 9 |
import threading
|
| 10 |
from pathlib import Path
|
|
@@ -21,7 +50,7 @@
|
|
| 21 |
try:
|
| 22 |
import gradio_client.utils as gc_utils
|
| 23 |
original_get_type = gc_utils.get_type
|
| 24 |
-
|
| 25 |
def patched_get_type(schema):
|
| 26 |
if not isinstance(schema, dict):
|
| 27 |
if isinstance(schema, bool):
|
|
@@ -32,7 +61,7 @@ def patched_get_type(schema):
|
|
| 32 |
return "number"
|
| 33 |
return "string"
|
| 34 |
return original_get_type(schema)
|
| 35 |
-
|
| 36 |
gc_utils.get_type = patched_get_type
|
| 37 |
logger.info("Gradio schema patch applied successfully")
|
| 38 |
except Exception as e:
|
|
@@ -74,30 +103,30 @@ class VideoProcessor:
|
|
| 74 |
"""
|
| 75 |
Main video processing orchestrator - coordinates all specialized components
|
| 76 |
"""
|
| 77 |
-
|
| 78 |
def __init__(self):
|
| 79 |
"""Initialize the video processor with all required components"""
|
| 80 |
self.config = get_config() # Use singleton config
|
| 81 |
self.device_manager = DeviceManager()
|
| 82 |
self.memory_manager = MemoryManager(self.device_manager.get_optimal_device())
|
| 83 |
-
|
| 84 |
# Initialize ModelLoader with DeviceManager and MemoryManager (as per actual implementation)
|
| 85 |
self.model_loader = ModelLoader(self.device_manager, self.memory_manager)
|
| 86 |
-
|
| 87 |
self.audio_processor = AudioProcessor()
|
| 88 |
self.progress_tracker = None
|
| 89 |
-
|
| 90 |
# Initialize core processor (will be set up after models load)
|
| 91 |
self.core_processor = None
|
| 92 |
self.two_stage_processor = None
|
| 93 |
-
|
| 94 |
# State management
|
| 95 |
self.models_loaded = False
|
| 96 |
self.loading_lock = threading.Lock()
|
| 97 |
self.cancel_event = threading.Event()
|
| 98 |
-
|
| 99 |
logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")
|
| 100 |
-
|
| 101 |
def _initialize_progress_tracker(self, video_path: str, progress_callback: Optional[Callable] = None):
|
| 102 |
"""Initialize progress tracker with video frame count"""
|
| 103 |
try:
|
|
@@ -105,29 +134,29 @@ def _initialize_progress_tracker(self, video_path: str, progress_callback: Optio
|
|
| 105 |
cap = cv2.VideoCapture(video_path)
|
| 106 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 107 |
cap.release()
|
| 108 |
-
|
| 109 |
if total_frames <= 0:
|
| 110 |
total_frames = 100 # Fallback estimate
|
| 111 |
-
|
| 112 |
self.progress_tracker = ProgressTracker(total_frames, progress_callback)
|
| 113 |
logger.info(f"Progress tracker initialized for {total_frames} frames")
|
| 114 |
except Exception as e:
|
| 115 |
logger.warning(f"Could not initialize progress tracker: {e}")
|
| 116 |
# Fallback to basic tracker
|
| 117 |
self.progress_tracker = ProgressTracker(100, progress_callback)
|
| 118 |
-
|
| 119 |
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
| 120 |
"""Load and validate all AI models"""
|
| 121 |
with self.loading_lock:
|
| 122 |
if self.models_loaded:
|
| 123 |
return "Models already loaded and validated"
|
| 124 |
-
|
| 125 |
try:
|
| 126 |
self.cancel_event.clear()
|
| 127 |
-
|
| 128 |
if progress_callback:
|
| 129 |
progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")
|
| 130 |
-
|
| 131 |
# Add detailed debugging for the IndexError
|
| 132 |
try:
|
| 133 |
# Load models using load_all_models which returns tuple of (LoadedModel, LoadedModel)
|
|
@@ -135,47 +164,47 @@ def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
|
| 135 |
progress_callback=progress_callback,
|
| 136 |
cancel_event=self.cancel_event
|
| 137 |
)
|
| 138 |
-
|
| 139 |
except IndexError as e:
|
| 140 |
import traceback
|
| 141 |
logger.error(f"IndexError in load_all_models: {e}")
|
| 142 |
logger.error(f"Full traceback:\n{traceback.format_exc()}")
|
| 143 |
-
|
| 144 |
# Get more context about where exactly the error happened
|
| 145 |
tb = traceback.extract_tb(e.__traceback__)
|
| 146 |
for frame in tb:
|
| 147 |
logger.error(f" File: {frame.filename}, Line: {frame.lineno}, Function: {frame.name}")
|
| 148 |
logger.error(f" Code: {frame.line}")
|
| 149 |
-
|
| 150 |
# Re-raise with more context
|
| 151 |
raise ModelLoadingError(f"Model loading failed with IndexError at line {tb[-1].lineno}: {e}")
|
| 152 |
-
|
| 153 |
except Exception as e:
|
| 154 |
import traceback
|
| 155 |
logger.error(f"Unexpected error in load_all_models: {e}")
|
| 156 |
logger.error(f"Error type: {type(e).__name__}")
|
| 157 |
logger.error(f"Full traceback:\n{traceback.format_exc()}")
|
| 158 |
raise
|
| 159 |
-
|
| 160 |
if self.cancel_event.is_set():
|
| 161 |
return "Model loading cancelled"
|
| 162 |
-
|
| 163 |
# Extract actual models from LoadedModel wrappers for two-stage processor
|
| 164 |
sam2_predictor = sam2_result.model if sam2_result else None
|
| 165 |
matanyone_model = matanyone_result.model if matanyone_result else None
|
| 166 |
-
|
| 167 |
# Check if at least one model loaded successfully
|
| 168 |
success = sam2_predictor is not None or matanyone_model is not None
|
| 169 |
-
|
| 170 |
if not success:
|
| 171 |
return "Model loading failed - check logs for details"
|
| 172 |
-
|
| 173 |
# Initialize core processor with the model loader (it expects a models object)
|
| 174 |
self.core_processor = CoreVideoProcessor(
|
| 175 |
config=self.config,
|
| 176 |
models=self.model_loader # Pass the whole model_loader object
|
| 177 |
)
|
| 178 |
-
|
| 179 |
# Initialize two-stage processor if available and models loaded
|
| 180 |
if TWO_STAGE_AVAILABLE:
|
| 181 |
if sam2_predictor is not None or matanyone_model is not None:
|
|
@@ -195,19 +224,19 @@ def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
|
| 195 |
logger.warning(" - SAM2 predictor is None")
|
| 196 |
if matanyone_model is None:
|
| 197 |
logger.warning(" - MatAnyone model is None")
|
| 198 |
-
|
| 199 |
self.models_loaded = True
|
| 200 |
message = self.model_loader.get_load_summary()
|
| 201 |
-
|
| 202 |
# Add two-stage status to message
|
| 203 |
if self.two_stage_processor is not None:
|
| 204 |
message += "\n✅ Two-stage processor ready with AI models"
|
| 205 |
else:
|
| 206 |
message += "\n⚠️ Two-stage processor not available"
|
| 207 |
-
|
| 208 |
logger.info(message)
|
| 209 |
return message
|
| 210 |
-
|
| 211 |
except AttributeError as e:
|
| 212 |
self.models_loaded = False
|
| 213 |
error_msg = f"Model loading failed - method not found: {str(e)}"
|
|
@@ -223,7 +252,7 @@ def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
|
| 223 |
error_msg = f"Unexpected error during model loading: {str(e)}"
|
| 224 |
logger.error(error_msg)
|
| 225 |
return error_msg
|
| 226 |
-
|
| 227 |
def process_video(
|
| 228 |
self,
|
| 229 |
video_path: str,
|
|
@@ -236,30 +265,30 @@ def process_video(
|
|
| 236 |
preview_greenscreen: bool = False
|
| 237 |
) -> Tuple[Optional[str], str]:
|
| 238 |
"""Process video with the specified parameters"""
|
| 239 |
-
|
| 240 |
if not self.models_loaded or not self.core_processor:
|
| 241 |
return None, "Models not loaded. Please load models first."
|
| 242 |
-
|
| 243 |
if self.cancel_event.is_set():
|
| 244 |
return None, "Processing cancelled"
|
| 245 |
-
|
| 246 |
# Initialize progress tracker with video frame count
|
| 247 |
self._initialize_progress_tracker(video_path, progress_callback)
|
| 248 |
-
|
| 249 |
# Validate input file
|
| 250 |
is_valid, validation_msg = validate_video_file(video_path)
|
| 251 |
if not is_valid:
|
| 252 |
return None, f"Invalid video: {validation_msg}"
|
| 253 |
-
|
| 254 |
try:
|
| 255 |
# Route to appropriate processing method
|
| 256 |
if use_two_stage:
|
| 257 |
if not TWO_STAGE_AVAILABLE:
|
| 258 |
return None, "Two-stage processing not available - module not found"
|
| 259 |
-
|
| 260 |
if self.two_stage_processor is None:
|
| 261 |
return None, "Two-stage processor not initialized - models may not be loaded properly"
|
| 262 |
-
|
| 263 |
logger.info("Using two-stage processing pipeline with AI models")
|
| 264 |
return self._process_two_stage(
|
| 265 |
video_path, background_choice, custom_background_path,
|
|
@@ -271,14 +300,14 @@ def process_video(
|
|
| 271 |
video_path, background_choice, custom_background_path,
|
| 272 |
progress_callback, preview_mask, preview_greenscreen
|
| 273 |
)
|
| 274 |
-
|
| 275 |
except VideoProcessingError as e:
|
| 276 |
logger.error(f"Video processing failed: {e}")
|
| 277 |
return None, f"Processing failed: {str(e)}"
|
| 278 |
except Exception as e:
|
| 279 |
logger.error(f"Unexpected error during video processing: {e}")
|
| 280 |
return None, f"Unexpected error: {str(e)}"
|
| 281 |
-
|
| 282 |
def _process_single_stage(
|
| 283 |
self,
|
| 284 |
video_path: str,
|
|
@@ -289,24 +318,24 @@ def _process_single_stage(
|
|
| 289 |
preview_greenscreen: bool
|
| 290 |
) -> Tuple[Optional[str], str]:
|
| 291 |
"""Process video using single-stage pipeline"""
|
| 292 |
-
|
| 293 |
# Generate output path
|
| 294 |
import time
|
| 295 |
timestamp = int(time.time())
|
| 296 |
output_dir = Path(self.config.output_dir) / "single_stage"
|
| 297 |
output_dir.mkdir(parents=True, exist_ok=True)
|
| 298 |
output_path = str(output_dir / f"processed_{timestamp}.mp4")
|
| 299 |
-
|
| 300 |
# Process video using core processor
|
| 301 |
result = self.core_processor.process_video(
|
| 302 |
input_path=video_path,
|
| 303 |
output_path=output_path,
|
| 304 |
bg_config={'background_choice': background_choice, 'custom_path': custom_background_path}
|
| 305 |
)
|
| 306 |
-
|
| 307 |
if not result:
|
| 308 |
return None, "Video processing failed"
|
| 309 |
-
|
| 310 |
# Add audio if not in preview mode
|
| 311 |
if not (preview_mask or preview_greenscreen):
|
| 312 |
final_video_path = self.audio_processor.add_audio_to_video(
|
|
@@ -315,7 +344,7 @@ def _process_single_stage(
|
|
| 315 |
)
|
| 316 |
else:
|
| 317 |
final_video_path = output_path
|
| 318 |
-
|
| 319 |
success_msg = (
|
| 320 |
f"Processing completed successfully!\n"
|
| 321 |
f"Frames processed: {result.get('frames', 'unknown')}\n"
|
|
@@ -323,9 +352,9 @@ def _process_single_stage(
|
|
| 323 |
f"Mode: Single-stage\n"
|
| 324 |
f"Device: {self.device_manager.get_optimal_device()}"
|
| 325 |
)
|
| 326 |
-
|
| 327 |
return final_video_path, success_msg
|
| 328 |
-
|
| 329 |
def _process_two_stage(
|
| 330 |
self,
|
| 331 |
video_path: str,
|
|
@@ -335,33 +364,33 @@ def _process_two_stage(
|
|
| 335 |
chroma_preset: str
|
| 336 |
) -> Tuple[Optional[str], str]:
|
| 337 |
"""Process video using two-stage pipeline"""
|
| 338 |
-
|
| 339 |
if self.two_stage_processor is None:
|
| 340 |
return None, "Two-stage processor not available"
|
| 341 |
-
|
| 342 |
# Get video dimensions for background preparation
|
| 343 |
import cv2
|
| 344 |
cap = cv2.VideoCapture(video_path)
|
| 345 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 346 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 347 |
cap.release()
|
| 348 |
-
|
| 349 |
# Prepare background using core processor
|
| 350 |
background = self.core_processor.prepare_background(
|
| 351 |
background_choice, custom_background_path, frame_width, frame_height
|
| 352 |
)
|
| 353 |
if background is None:
|
| 354 |
return None, "Failed to prepare background"
|
| 355 |
-
|
| 356 |
# Process with two-stage pipeline
|
| 357 |
import time
|
| 358 |
timestamp = int(time.time())
|
| 359 |
output_dir = Path(self.config.output_dir) / "two_stage"
|
| 360 |
output_dir.mkdir(parents=True, exist_ok=True)
|
| 361 |
final_output = str(output_dir / f"final_{timestamp}.mp4")
|
| 362 |
-
|
| 363 |
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
|
| 364 |
-
|
| 365 |
logger.info(f"Starting two-stage processing with chroma preset: {chroma_preset}")
|
| 366 |
result, message = self.two_stage_processor.process_full_pipeline(
|
| 367 |
video_path,
|
|
@@ -370,10 +399,10 @@ def _process_two_stage(
|
|
| 370 |
chroma_settings=chroma_settings,
|
| 371 |
progress_callback=progress_callback
|
| 372 |
)
|
| 373 |
-
|
| 374 |
if result is None:
|
| 375 |
return None, message
|
| 376 |
-
|
| 377 |
success_msg = (
|
| 378 |
f"Two-stage processing completed!\n"
|
| 379 |
f"Background: {background_choice}\n"
|
|
@@ -381,9 +410,9 @@ def _process_two_stage(
|
|
| 381 |
f"Quality: Cinema-grade with AI models\n"
|
| 382 |
f"Device: {self.device_manager.get_optimal_device()}"
|
| 383 |
)
|
| 384 |
-
|
| 385 |
return result, success_msg
|
| 386 |
-
|
| 387 |
def get_status(self) -> Dict[str, Any]:
|
| 388 |
"""Get comprehensive status of all components"""
|
| 389 |
base_status = {
|
|
@@ -393,7 +422,7 @@ def get_status(self) -> Dict[str, Any]:
|
|
| 393 |
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 394 |
'config': self.config.to_dict()
|
| 395 |
}
|
| 396 |
-
|
| 397 |
# Add model-specific status if available
|
| 398 |
if self.model_loader:
|
| 399 |
base_status['model_loader_available'] = True
|
|
@@ -403,28 +432,28 @@ def get_status(self) -> Dict[str, Any]:
|
|
| 403 |
except AttributeError:
|
| 404 |
base_status['sam2_loaded'] = False
|
| 405 |
base_status['matanyone_loaded'] = False
|
| 406 |
-
|
| 407 |
# Add processing status if available
|
| 408 |
if self.core_processor:
|
| 409 |
base_status['core_processor_loaded'] = True
|
| 410 |
-
|
| 411 |
# Add two-stage processor status
|
| 412 |
if self.two_stage_processor:
|
| 413 |
base_status['two_stage_processor_ready'] = True
|
| 414 |
else:
|
| 415 |
base_status['two_stage_processor_ready'] = False
|
| 416 |
-
|
| 417 |
# Add progress tracking if available
|
| 418 |
if self.progress_tracker:
|
| 419 |
base_status['progress'] = self.progress_tracker.get_all_progress()
|
| 420 |
-
|
| 421 |
return base_status
|
| 422 |
-
|
| 423 |
def cancel_processing(self):
|
| 424 |
"""Cancel any ongoing processing"""
|
| 425 |
self.cancel_event.set()
|
| 426 |
logger.info("Processing cancellation requested")
|
| 427 |
-
|
| 428 |
def cleanup_resources(self):
|
| 429 |
"""Clean up all resources"""
|
| 430 |
self.memory_manager.cleanup_aggressive()
|
|
@@ -482,20 +511,19 @@ def main():
|
|
| 482 |
logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
|
| 483 |
logger.info(f"Two-stage module available: {TWO_STAGE_AVAILABLE}")
|
| 484 |
logger.info("Modular architecture loaded successfully")
|
| 485 |
-
|
| 486 |
# Import and create UI
|
| 487 |
from ui_components import create_interface
|
| 488 |
demo = create_interface()
|
| 489 |
-
|
| 490 |
-
# Launch application
|
| 491 |
demo.queue().launch(
|
| 492 |
server_name="0.0.0.0",
|
| 493 |
server_port=7860,
|
| 494 |
-
share=True,
|
| 495 |
show_error=True,
|
| 496 |
debug=False
|
| 497 |
)
|
| 498 |
-
|
| 499 |
except Exception as e:
|
| 500 |
logger.error(f"Application startup failed: {e}")
|
| 501 |
raise
|
|
@@ -505,4 +533,4 @@ def main():
|
|
| 505 |
|
| 506 |
|
| 507 |
if __name__ == "__main__":
|
| 508 |
-
main()
|
|
|
|
| 4 |
Refactored modular architecture - orchestrates specialized components
|
| 5 |
"""
|
| 6 |
|
| 7 |
+
# 0️⃣ Early threading/OMP sanitization (prevents libgomp + interop warnings)
|
| 8 |
import os
|
| 9 |
+
def _clean_int_env(name: str, default: str | None = None):
|
| 10 |
+
val = os.environ.get(name)
|
| 11 |
+
if val is None:
|
| 12 |
+
if default is not None:
|
| 13 |
+
os.environ[name] = str(default)
|
| 14 |
+
return
|
| 15 |
+
try:
|
| 16 |
+
int(str(val).strip())
|
| 17 |
+
except ValueError:
|
| 18 |
+
if default is None:
|
| 19 |
+
os.environ.pop(name, None)
|
| 20 |
+
else:
|
| 21 |
+
os.environ[name] = str(default)
|
| 22 |
+
|
| 23 |
+
_clean_int_env("OMP_NUM_THREADS", "2")
|
| 24 |
+
_clean_int_env("MKL_NUM_THREADS", "2")
|
| 25 |
+
_clean_int_env("OPENBLAS_NUM_THREADS", "2")
|
| 26 |
+
_clean_int_env("NUMEXPR_NUM_THREADS", "2")
|
| 27 |
+
|
| 28 |
+
try:
|
| 29 |
+
import torch # call thread setters BEFORE heavy parallel work starts
|
| 30 |
+
if hasattr(torch, "set_num_interop_threads"):
|
| 31 |
+
torch.set_num_interop_threads(2)
|
| 32 |
+
if hasattr(torch, "set_num_threads"):
|
| 33 |
+
torch.set_num_threads(2)
|
| 34 |
+
except Exception:
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
import logging
|
| 38 |
import threading
|
| 39 |
from pathlib import Path
|
|
|
|
| 50 |
try:
|
| 51 |
import gradio_client.utils as gc_utils
|
| 52 |
original_get_type = gc_utils.get_type
|
| 53 |
+
|
| 54 |
def patched_get_type(schema):
|
| 55 |
if not isinstance(schema, dict):
|
| 56 |
if isinstance(schema, bool):
|
|
|
|
| 61 |
return "number"
|
| 62 |
return "string"
|
| 63 |
return original_get_type(schema)
|
| 64 |
+
|
| 65 |
gc_utils.get_type = patched_get_type
|
| 66 |
logger.info("Gradio schema patch applied successfully")
|
| 67 |
except Exception as e:
|
|
|
|
| 103 |
"""
|
| 104 |
Main video processing orchestrator - coordinates all specialized components
|
| 105 |
"""
|
| 106 |
+
|
| 107 |
def __init__(self):
|
| 108 |
"""Initialize the video processor with all required components"""
|
| 109 |
self.config = get_config() # Use singleton config
|
| 110 |
self.device_manager = DeviceManager()
|
| 111 |
self.memory_manager = MemoryManager(self.device_manager.get_optimal_device())
|
| 112 |
+
|
| 113 |
# Initialize ModelLoader with DeviceManager and MemoryManager (as per actual implementation)
|
| 114 |
self.model_loader = ModelLoader(self.device_manager, self.memory_manager)
|
| 115 |
+
|
| 116 |
self.audio_processor = AudioProcessor()
|
| 117 |
self.progress_tracker = None
|
| 118 |
+
|
| 119 |
# Initialize core processor (will be set up after models load)
|
| 120 |
self.core_processor = None
|
| 121 |
self.two_stage_processor = None
|
| 122 |
+
|
| 123 |
# State management
|
| 124 |
self.models_loaded = False
|
| 125 |
self.loading_lock = threading.Lock()
|
| 126 |
self.cancel_event = threading.Event()
|
| 127 |
+
|
| 128 |
logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")
|
| 129 |
+
|
| 130 |
def _initialize_progress_tracker(self, video_path: str, progress_callback: Optional[Callable] = None):
|
| 131 |
"""Initialize progress tracker with video frame count"""
|
| 132 |
try:
|
|
|
|
| 134 |
cap = cv2.VideoCapture(video_path)
|
| 135 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 136 |
cap.release()
|
| 137 |
+
|
| 138 |
if total_frames <= 0:
|
| 139 |
total_frames = 100 # Fallback estimate
|
| 140 |
+
|
| 141 |
self.progress_tracker = ProgressTracker(total_frames, progress_callback)
|
| 142 |
logger.info(f"Progress tracker initialized for {total_frames} frames")
|
| 143 |
except Exception as e:
|
| 144 |
logger.warning(f"Could not initialize progress tracker: {e}")
|
| 145 |
# Fallback to basic tracker
|
| 146 |
self.progress_tracker = ProgressTracker(100, progress_callback)
|
| 147 |
+
|
| 148 |
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
|
| 149 |
"""Load and validate all AI models"""
|
| 150 |
with self.loading_lock:
|
| 151 |
if self.models_loaded:
|
| 152 |
return "Models already loaded and validated"
|
| 153 |
+
|
| 154 |
try:
|
| 155 |
self.cancel_event.clear()
|
| 156 |
+
|
| 157 |
if progress_callback:
|
| 158 |
progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")
|
| 159 |
+
|
| 160 |
# Add detailed debugging for the IndexError
|
| 161 |
try:
|
| 162 |
# Load models using load_all_models which returns tuple of (LoadedModel, LoadedModel)
|
|
|
|
| 164 |
progress_callback=progress_callback,
|
| 165 |
cancel_event=self.cancel_event
|
| 166 |
)
|
| 167 |
+
|
| 168 |
except IndexError as e:
|
| 169 |
import traceback
|
| 170 |
logger.error(f"IndexError in load_all_models: {e}")
|
| 171 |
logger.error(f"Full traceback:\n{traceback.format_exc()}")
|
| 172 |
+
|
| 173 |
# Get more context about where exactly the error happened
|
| 174 |
tb = traceback.extract_tb(e.__traceback__)
|
| 175 |
for frame in tb:
|
| 176 |
logger.error(f" File: {frame.filename}, Line: {frame.lineno}, Function: {frame.name}")
|
| 177 |
logger.error(f" Code: {frame.line}")
|
| 178 |
+
|
| 179 |
# Re-raise with more context
|
| 180 |
raise ModelLoadingError(f"Model loading failed with IndexError at line {tb[-1].lineno}: {e}")
|
| 181 |
+
|
| 182 |
except Exception as e:
|
| 183 |
import traceback
|
| 184 |
logger.error(f"Unexpected error in load_all_models: {e}")
|
| 185 |
logger.error(f"Error type: {type(e).__name__}")
|
| 186 |
logger.error(f"Full traceback:\n{traceback.format_exc()}")
|
| 187 |
raise
|
| 188 |
+
|
| 189 |
if self.cancel_event.is_set():
|
| 190 |
return "Model loading cancelled"
|
| 191 |
+
|
| 192 |
# Extract actual models from LoadedModel wrappers for two-stage processor
|
| 193 |
sam2_predictor = sam2_result.model if sam2_result else None
|
| 194 |
matanyone_model = matanyone_result.model if matanyone_result else None
|
| 195 |
+
|
| 196 |
# Check if at least one model loaded successfully
|
| 197 |
success = sam2_predictor is not None or matanyone_model is not None
|
| 198 |
+
|
| 199 |
if not success:
|
| 200 |
return "Model loading failed - check logs for details"
|
| 201 |
+
|
| 202 |
# Initialize core processor with the model loader (it expects a models object)
|
| 203 |
self.core_processor = CoreVideoProcessor(
|
| 204 |
config=self.config,
|
| 205 |
models=self.model_loader # Pass the whole model_loader object
|
| 206 |
)
|
| 207 |
+
|
| 208 |
# Initialize two-stage processor if available and models loaded
|
| 209 |
if TWO_STAGE_AVAILABLE:
|
| 210 |
if sam2_predictor is not None or matanyone_model is not None:
|
|
|
|
| 224 |
logger.warning(" - SAM2 predictor is None")
|
| 225 |
if matanyone_model is None:
|
| 226 |
logger.warning(" - MatAnyone model is None")
|
| 227 |
+
|
| 228 |
self.models_loaded = True
|
| 229 |
message = self.model_loader.get_load_summary()
|
| 230 |
+
|
| 231 |
# Add two-stage status to message
|
| 232 |
if self.two_stage_processor is not None:
|
| 233 |
message += "\n✅ Two-stage processor ready with AI models"
|
| 234 |
else:
|
| 235 |
message += "\n⚠️ Two-stage processor not available"
|
| 236 |
+
|
| 237 |
logger.info(message)
|
| 238 |
return message
|
| 239 |
+
|
| 240 |
except AttributeError as e:
|
| 241 |
self.models_loaded = False
|
| 242 |
error_msg = f"Model loading failed - method not found: {str(e)}"
|
|
|
|
| 252 |
error_msg = f"Unexpected error during model loading: {str(e)}"
|
| 253 |
logger.error(error_msg)
|
| 254 |
return error_msg
|
| 255 |
+
|
| 256 |
def process_video(
|
| 257 |
self,
|
| 258 |
video_path: str,
|
|
|
|
| 265 |
preview_greenscreen: bool = False
|
| 266 |
) -> Tuple[Optional[str], str]:
|
| 267 |
"""Process video with the specified parameters"""
|
| 268 |
+
|
| 269 |
if not self.models_loaded or not self.core_processor:
|
| 270 |
return None, "Models not loaded. Please load models first."
|
| 271 |
+
|
| 272 |
if self.cancel_event.is_set():
|
| 273 |
return None, "Processing cancelled"
|
| 274 |
+
|
| 275 |
# Initialize progress tracker with video frame count
|
| 276 |
self._initialize_progress_tracker(video_path, progress_callback)
|
| 277 |
+
|
| 278 |
# Validate input file
|
| 279 |
is_valid, validation_msg = validate_video_file(video_path)
|
| 280 |
if not is_valid:
|
| 281 |
return None, f"Invalid video: {validation_msg}"
|
| 282 |
+
|
| 283 |
try:
|
| 284 |
# Route to appropriate processing method
|
| 285 |
if use_two_stage:
|
| 286 |
if not TWO_STAGE_AVAILABLE:
|
| 287 |
return None, "Two-stage processing not available - module not found"
|
| 288 |
+
|
| 289 |
if self.two_stage_processor is None:
|
| 290 |
return None, "Two-stage processor not initialized - models may not be loaded properly"
|
| 291 |
+
|
| 292 |
logger.info("Using two-stage processing pipeline with AI models")
|
| 293 |
return self._process_two_stage(
|
| 294 |
video_path, background_choice, custom_background_path,
|
|
|
|
| 300 |
video_path, background_choice, custom_background_path,
|
| 301 |
progress_callback, preview_mask, preview_greenscreen
|
| 302 |
)
|
| 303 |
+
|
| 304 |
except VideoProcessingError as e:
|
| 305 |
logger.error(f"Video processing failed: {e}")
|
| 306 |
return None, f"Processing failed: {str(e)}"
|
| 307 |
except Exception as e:
|
| 308 |
logger.error(f"Unexpected error during video processing: {e}")
|
| 309 |
return None, f"Unexpected error: {str(e)}"
|
| 310 |
+
|
| 311 |
def _process_single_stage(
|
| 312 |
self,
|
| 313 |
video_path: str,
|
|
|
|
| 318 |
preview_greenscreen: bool
|
| 319 |
) -> Tuple[Optional[str], str]:
|
| 320 |
"""Process video using single-stage pipeline"""
|
| 321 |
+
|
| 322 |
# Generate output path
|
| 323 |
import time
|
| 324 |
timestamp = int(time.time())
|
| 325 |
output_dir = Path(self.config.output_dir) / "single_stage"
|
| 326 |
output_dir.mkdir(parents=True, exist_ok=True)
|
| 327 |
output_path = str(output_dir / f"processed_{timestamp}.mp4")
|
| 328 |
+
|
| 329 |
# Process video using core processor
|
| 330 |
result = self.core_processor.process_video(
|
| 331 |
input_path=video_path,
|
| 332 |
output_path=output_path,
|
| 333 |
bg_config={'background_choice': background_choice, 'custom_path': custom_background_path}
|
| 334 |
)
|
| 335 |
+
|
| 336 |
if not result:
|
| 337 |
return None, "Video processing failed"
|
| 338 |
+
|
| 339 |
# Add audio if not in preview mode
|
| 340 |
if not (preview_mask or preview_greenscreen):
|
| 341 |
final_video_path = self.audio_processor.add_audio_to_video(
|
|
|
|
| 344 |
)
|
| 345 |
else:
|
| 346 |
final_video_path = output_path
|
| 347 |
+
|
| 348 |
success_msg = (
|
| 349 |
f"Processing completed successfully!\n"
|
| 350 |
f"Frames processed: {result.get('frames', 'unknown')}\n"
|
|
|
|
| 352 |
f"Mode: Single-stage\n"
|
| 353 |
f"Device: {self.device_manager.get_optimal_device()}"
|
| 354 |
)
|
| 355 |
+
|
| 356 |
return final_video_path, success_msg
|
| 357 |
+
|
| 358 |
def _process_two_stage(
|
| 359 |
self,
|
| 360 |
video_path: str,
|
|
|
|
| 364 |
chroma_preset: str
|
| 365 |
) -> Tuple[Optional[str], str]:
|
| 366 |
"""Process video using two-stage pipeline"""
|
| 367 |
+
|
| 368 |
if self.two_stage_processor is None:
|
| 369 |
return None, "Two-stage processor not available"
|
| 370 |
+
|
| 371 |
# Get video dimensions for background preparation
|
| 372 |
import cv2
|
| 373 |
cap = cv2.VideoCapture(video_path)
|
| 374 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 375 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 376 |
cap.release()
|
| 377 |
+
|
| 378 |
# Prepare background using core processor
|
| 379 |
background = self.core_processor.prepare_background(
|
| 380 |
background_choice, custom_background_path, frame_width, frame_height
|
| 381 |
)
|
| 382 |
if background is None:
|
| 383 |
return None, "Failed to prepare background"
|
| 384 |
+
|
| 385 |
# Process with two-stage pipeline
|
| 386 |
import time
|
| 387 |
timestamp = int(time.time())
|
| 388 |
output_dir = Path(self.config.output_dir) / "two_stage"
|
| 389 |
output_dir.mkdir(parents=True, exist_ok=True)
|
| 390 |
final_output = str(output_dir / f"final_{timestamp}.mp4")
|
| 391 |
+
|
| 392 |
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
|
| 393 |
+
|
| 394 |
logger.info(f"Starting two-stage processing with chroma preset: {chroma_preset}")
|
| 395 |
result, message = self.two_stage_processor.process_full_pipeline(
|
| 396 |
video_path,
|
|
|
|
| 399 |
chroma_settings=chroma_settings,
|
| 400 |
progress_callback=progress_callback
|
| 401 |
)
|
| 402 |
+
|
| 403 |
if result is None:
|
| 404 |
return None, message
|
| 405 |
+
|
| 406 |
success_msg = (
|
| 407 |
f"Two-stage processing completed!\n"
|
| 408 |
f"Background: {background_choice}\n"
|
|
|
|
| 410 |
f"Quality: Cinema-grade with AI models\n"
|
| 411 |
f"Device: {self.device_manager.get_optimal_device()}"
|
| 412 |
)
|
| 413 |
+
|
| 414 |
return result, success_msg
|
| 415 |
+
|
| 416 |
def get_status(self) -> Dict[str, Any]:
|
| 417 |
"""Get comprehensive status of all components"""
|
| 418 |
base_status = {
|
|
|
|
| 422 |
'memory_usage': self.memory_manager.get_memory_usage(),
|
| 423 |
'config': self.config.to_dict()
|
| 424 |
}
|
| 425 |
+
|
| 426 |
# Add model-specific status if available
|
| 427 |
if self.model_loader:
|
| 428 |
base_status['model_loader_available'] = True
|
|
|
|
| 432 |
except AttributeError:
|
| 433 |
base_status['sam2_loaded'] = False
|
| 434 |
base_status['matanyone_loaded'] = False
|
| 435 |
+
|
| 436 |
# Add processing status if available
|
| 437 |
if self.core_processor:
|
| 438 |
base_status['core_processor_loaded'] = True
|
| 439 |
+
|
| 440 |
# Add two-stage processor status
|
| 441 |
if self.two_stage_processor:
|
| 442 |
base_status['two_stage_processor_ready'] = True
|
| 443 |
else:
|
| 444 |
base_status['two_stage_processor_ready'] = False
|
| 445 |
+
|
| 446 |
# Add progress tracking if available
|
| 447 |
if self.progress_tracker:
|
| 448 |
base_status['progress'] = self.progress_tracker.get_all_progress()
|
| 449 |
+
|
| 450 |
return base_status
|
| 451 |
+
|
| 452 |
def cancel_processing(self):
|
| 453 |
"""Cancel any ongoing processing"""
|
| 454 |
self.cancel_event.set()
|
| 455 |
logger.info("Processing cancellation requested")
|
| 456 |
+
|
| 457 |
def cleanup_resources(self):
|
| 458 |
"""Clean up all resources"""
|
| 459 |
self.memory_manager.cleanup_aggressive()
|
|
|
|
| 511 |
logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
|
| 512 |
logger.info(f"Two-stage module available: {TWO_STAGE_AVAILABLE}")
|
| 513 |
logger.info("Modular architecture loaded successfully")
|
| 514 |
+
|
| 515 |
# Import and create UI
|
| 516 |
from ui_components import create_interface
|
| 517 |
demo = create_interface()
|
| 518 |
+
|
| 519 |
+
# Launch application (no share=True on Spaces)
|
| 520 |
demo.queue().launch(
|
| 521 |
server_name="0.0.0.0",
|
| 522 |
server_port=7860,
|
|
|
|
| 523 |
show_error=True,
|
| 524 |
debug=False
|
| 525 |
)
|
| 526 |
+
|
| 527 |
except Exception as e:
|
| 528 |
logger.error(f"Application startup failed: {e}")
|
| 529 |
raise
|
|
|
|
| 533 |
|
| 534 |
|
| 535 |
if __name__ == "__main__":
|
| 536 |
+
main()
|