Create processing/fallback.py
Browse files- processing/fallback.py +543 -0
processing/fallback.py
ADDED
|
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Fallback strategies for BackgroundFX Pro.
|
| 3 |
+
Implements robust fallback mechanisms when primary processing fails.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import torch
|
| 9 |
+
from typing import Dict, List, Optional, Tuple, Any
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
from enum import Enum
|
| 12 |
+
import logging
|
| 13 |
+
import traceback
|
| 14 |
+
|
| 15 |
+
from ..utils.logger import setup_logger
|
| 16 |
+
from ..utils.device import DeviceManager
|
| 17 |
+
from ..utils.config import ConfigManager
|
| 18 |
+
from ..core.quality import QualityAnalyzer
|
| 19 |
+
|
| 20 |
+
logger = setup_logger(__name__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class FallbackLevel(Enum):
|
| 24 |
+
"""Fallback hierarchy levels."""
|
| 25 |
+
NONE = 0
|
| 26 |
+
QUALITY_REDUCTION = 1
|
| 27 |
+
METHOD_SWITCH = 2
|
| 28 |
+
BASIC_PROCESSING = 3
|
| 29 |
+
MINIMAL_PROCESSING = 4
|
| 30 |
+
PASSTHROUGH = 5
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@dataclass
|
| 34 |
+
class FallbackConfig:
|
| 35 |
+
"""Configuration for fallback strategies."""
|
| 36 |
+
max_retries: int = 3
|
| 37 |
+
quality_reduction_factor: float = 0.75
|
| 38 |
+
min_quality: float = 0.3
|
| 39 |
+
enable_caching: bool = True
|
| 40 |
+
cache_size: int = 10
|
| 41 |
+
timeout_seconds: float = 30.0
|
| 42 |
+
gpu_fallback_to_cpu: bool = True
|
| 43 |
+
progressive_downscale: bool = True
|
| 44 |
+
min_resolution: Tuple[int, int] = (320, 240)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FallbackStrategy:
|
| 48 |
+
"""Intelligent fallback strategy manager."""
|
| 49 |
+
|
| 50 |
+
def __init__(self, config: Optional[FallbackConfig] = None):
|
| 51 |
+
self.config = config or FallbackConfig()
|
| 52 |
+
self.device_manager = DeviceManager()
|
| 53 |
+
self.quality_analyzer = QualityAnalyzer()
|
| 54 |
+
self.cache = {}
|
| 55 |
+
self.fallback_history = []
|
| 56 |
+
self.current_level = FallbackLevel.NONE
|
| 57 |
+
|
| 58 |
+
def execute_with_fallback(self, func, *args, **kwargs) -> Dict[str, Any]:
|
| 59 |
+
"""
|
| 60 |
+
Execute function with automatic fallback on failure.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
func: Function to execute
|
| 64 |
+
*args: Function arguments
|
| 65 |
+
**kwargs: Function keyword arguments
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
Result dictionary with status and output
|
| 69 |
+
"""
|
| 70 |
+
attempt = 0
|
| 71 |
+
last_error = None
|
| 72 |
+
original_args = args
|
| 73 |
+
original_kwargs = kwargs.copy()
|
| 74 |
+
|
| 75 |
+
while attempt < self.config.max_retries:
|
| 76 |
+
try:
|
| 77 |
+
# Log attempt
|
| 78 |
+
logger.info(f"Attempt {attempt + 1}/{self.config.max_retries} for {func.__name__}")
|
| 79 |
+
|
| 80 |
+
# Try execution
|
| 81 |
+
result = func(*args, **kwargs)
|
| 82 |
+
|
| 83 |
+
# Success - reset fallback level
|
| 84 |
+
self.current_level = FallbackLevel.NONE
|
| 85 |
+
|
| 86 |
+
return {
|
| 87 |
+
'success': True,
|
| 88 |
+
'result': result,
|
| 89 |
+
'attempts': attempt + 1,
|
| 90 |
+
'fallback_level': self.current_level
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
except Exception as e:
|
| 94 |
+
last_error = e
|
| 95 |
+
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
|
| 96 |
+
|
| 97 |
+
# Apply fallback strategy
|
| 98 |
+
fallback_result = self._apply_fallback(
|
| 99 |
+
func, e, attempt,
|
| 100 |
+
original_args, original_kwargs
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
if fallback_result['handled']:
|
| 104 |
+
args = fallback_result.get('new_args', args)
|
| 105 |
+
kwargs = fallback_result.get('new_kwargs', kwargs)
|
| 106 |
+
else:
|
| 107 |
+
break
|
| 108 |
+
|
| 109 |
+
attempt += 1
|
| 110 |
+
|
| 111 |
+
# All attempts failed - apply final fallback
|
| 112 |
+
logger.error(f"All attempts failed for {func.__name__}")
|
| 113 |
+
return self._final_fallback(func, last_error, original_args)
|
| 114 |
+
|
| 115 |
+
def _apply_fallback(self, func, error: Exception,
|
| 116 |
+
attempt: int, original_args: tuple,
|
| 117 |
+
original_kwargs: dict) -> Dict[str, Any]:
|
| 118 |
+
"""Apply appropriate fallback strategy based on error type."""
|
| 119 |
+
|
| 120 |
+
error_type = type(error).__name__
|
| 121 |
+
self.fallback_history.append({
|
| 122 |
+
'function': func.__name__,
|
| 123 |
+
'error': error_type,
|
| 124 |
+
'attempt': attempt
|
| 125 |
+
})
|
| 126 |
+
|
| 127 |
+
# GPU memory error - switch to CPU
|
| 128 |
+
if 'CUDA' in str(error) or 'GPU' in str(error):
|
| 129 |
+
return self._handle_gpu_error(original_kwargs)
|
| 130 |
+
|
| 131 |
+
# Memory error - reduce quality
|
| 132 |
+
elif 'memory' in str(error).lower():
|
| 133 |
+
return self._handle_memory_error(original_args, original_kwargs)
|
| 134 |
+
|
| 135 |
+
# Timeout error - simplify processing
|
| 136 |
+
elif 'timeout' in str(error).lower():
|
| 137 |
+
return self._handle_timeout_error(original_kwargs)
|
| 138 |
+
|
| 139 |
+
# Model loading error - use simpler model
|
| 140 |
+
elif 'model' in str(error).lower():
|
| 141 |
+
return self._handle_model_error(original_kwargs)
|
| 142 |
+
|
| 143 |
+
# Generic error - progressive degradation
|
| 144 |
+
else:
|
| 145 |
+
return self._handle_generic_error(attempt, original_kwargs)
|
| 146 |
+
|
| 147 |
+
def _handle_gpu_error(self, kwargs: dict) -> Dict[str, Any]:
|
| 148 |
+
"""Handle GPU-related errors."""
|
| 149 |
+
logger.info("GPU error detected, falling back to CPU")
|
| 150 |
+
|
| 151 |
+
if self.config.gpu_fallback_to_cpu:
|
| 152 |
+
# Switch to CPU
|
| 153 |
+
self.device_manager.device = torch.device('cpu')
|
| 154 |
+
kwargs['device'] = 'cpu'
|
| 155 |
+
|
| 156 |
+
# Reduce batch size if present
|
| 157 |
+
if 'batch_size' in kwargs:
|
| 158 |
+
kwargs['batch_size'] = max(1, kwargs['batch_size'] // 2)
|
| 159 |
+
|
| 160 |
+
self.current_level = FallbackLevel.METHOD_SWITCH
|
| 161 |
+
|
| 162 |
+
return {
|
| 163 |
+
'handled': True,
|
| 164 |
+
'new_kwargs': kwargs
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
return {'handled': False}
|
| 168 |
+
|
| 169 |
+
def _handle_memory_error(self, args: tuple,
|
| 170 |
+
kwargs: dict) -> Dict[str, Any]:
|
| 171 |
+
"""Handle memory-related errors."""
|
| 172 |
+
logger.info("Memory error detected, reducing quality")
|
| 173 |
+
|
| 174 |
+
# Try to find image in args
|
| 175 |
+
image = None
|
| 176 |
+
image_idx = -1
|
| 177 |
+
|
| 178 |
+
for i, arg in enumerate(args):
|
| 179 |
+
if isinstance(arg, np.ndarray) and len(arg.shape) == 3:
|
| 180 |
+
image = arg
|
| 181 |
+
image_idx = i
|
| 182 |
+
break
|
| 183 |
+
|
| 184 |
+
if image is not None and self.config.progressive_downscale:
|
| 185 |
+
# Reduce image size
|
| 186 |
+
h, w = image.shape[:2]
|
| 187 |
+
new_h = int(h * self.config.quality_reduction_factor)
|
| 188 |
+
new_w = int(w * self.config.quality_reduction_factor)
|
| 189 |
+
|
| 190 |
+
# Ensure minimum resolution
|
| 191 |
+
new_h = max(new_h, self.config.min_resolution[1])
|
| 192 |
+
new_w = max(new_w, self.config.min_resolution[0])
|
| 193 |
+
|
| 194 |
+
if new_h < h or new_w < w:
|
| 195 |
+
resized = cv2.resize(image, (new_w, new_h))
|
| 196 |
+
args = list(args)
|
| 197 |
+
args[image_idx] = resized
|
| 198 |
+
|
| 199 |
+
self.current_level = FallbackLevel.QUALITY_REDUCTION
|
| 200 |
+
|
| 201 |
+
return {
|
| 202 |
+
'handled': True,
|
| 203 |
+
'new_args': tuple(args),
|
| 204 |
+
'new_kwargs': kwargs
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
# Reduce other memory-intensive parameters
|
| 208 |
+
if 'quality' in kwargs:
|
| 209 |
+
kwargs['quality'] = max(
|
| 210 |
+
self.config.min_quality,
|
| 211 |
+
kwargs['quality'] * self.config.quality_reduction_factor
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
return {
|
| 215 |
+
'handled': True,
|
| 216 |
+
'new_kwargs': kwargs
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
def _handle_timeout_error(self, kwargs: dict) -> Dict[str, Any]:
|
| 220 |
+
"""Handle timeout errors by simplifying processing."""
|
| 221 |
+
logger.info("Timeout detected, simplifying processing")
|
| 222 |
+
|
| 223 |
+
# Disable expensive operations
|
| 224 |
+
simplifications = {
|
| 225 |
+
'use_refinement': False,
|
| 226 |
+
'use_temporal': False,
|
| 227 |
+
'use_guided_filter': False,
|
| 228 |
+
'iterations': 1,
|
| 229 |
+
'num_samples': 1
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
for key, value in simplifications.items():
|
| 233 |
+
if key in kwargs:
|
| 234 |
+
kwargs[key] = value
|
| 235 |
+
|
| 236 |
+
self.current_level = FallbackLevel.BASIC_PROCESSING
|
| 237 |
+
|
| 238 |
+
return {
|
| 239 |
+
'handled': True,
|
| 240 |
+
'new_kwargs': kwargs
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
def _handle_model_error(self, kwargs: dict) -> Dict[str, Any]:
|
| 244 |
+
"""Handle model loading errors."""
|
| 245 |
+
logger.info("Model error detected, using simpler model")
|
| 246 |
+
|
| 247 |
+
# Switch to simpler model
|
| 248 |
+
if 'model_type' in kwargs:
|
| 249 |
+
model_hierarchy = ['large', 'base', 'small', 'tiny']
|
| 250 |
+
current = kwargs.get('model_type', 'base')
|
| 251 |
+
|
| 252 |
+
if current in model_hierarchy:
|
| 253 |
+
idx = model_hierarchy.index(current)
|
| 254 |
+
if idx < len(model_hierarchy) - 1:
|
| 255 |
+
kwargs['model_type'] = model_hierarchy[idx + 1]
|
| 256 |
+
self.current_level = FallbackLevel.METHOD_SWITCH
|
| 257 |
+
|
| 258 |
+
return {
|
| 259 |
+
'handled': True,
|
| 260 |
+
'new_kwargs': kwargs
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
# Disable model-based processing
|
| 264 |
+
kwargs['use_model'] = False
|
| 265 |
+
self.current_level = FallbackLevel.BASIC_PROCESSING
|
| 266 |
+
|
| 267 |
+
return {
|
| 268 |
+
'handled': True,
|
| 269 |
+
'new_kwargs': kwargs
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
def _handle_generic_error(self, attempt: int,
|
| 273 |
+
kwargs: dict) -> Dict[str, Any]:
|
| 274 |
+
"""Handle generic errors with progressive degradation."""
|
| 275 |
+
logger.info(f"Generic error, applying degradation level {attempt + 1}")
|
| 276 |
+
|
| 277 |
+
# Progressive degradation based on attempt
|
| 278 |
+
if attempt == 0:
|
| 279 |
+
# First attempt - minor quality reduction
|
| 280 |
+
self.current_level = FallbackLevel.QUALITY_REDUCTION
|
| 281 |
+
if 'quality' in kwargs:
|
| 282 |
+
kwargs['quality'] *= 0.8
|
| 283 |
+
|
| 284 |
+
elif attempt == 1:
|
| 285 |
+
# Second attempt - switch methods
|
| 286 |
+
self.current_level = FallbackLevel.METHOD_SWITCH
|
| 287 |
+
kwargs['method'] = 'basic'
|
| 288 |
+
|
| 289 |
+
else:
|
| 290 |
+
# Final attempt - minimal processing
|
| 291 |
+
self.current_level = FallbackLevel.MINIMAL_PROCESSING
|
| 292 |
+
kwargs['skip_refinement'] = True
|
| 293 |
+
kwargs['fast_mode'] = True
|
| 294 |
+
|
| 295 |
+
return {
|
| 296 |
+
'handled': True,
|
| 297 |
+
'new_kwargs': kwargs
|
| 298 |
+
}
|
| 299 |
+
|
| 300 |
+
def _final_fallback(self, func, error: Exception,
|
| 301 |
+
original_args: tuple) -> Dict[str, Any]:
|
| 302 |
+
"""Apply final fallback when all attempts fail."""
|
| 303 |
+
logger.error(f"Final fallback for {func.__name__}: {str(error)}")
|
| 304 |
+
self.current_level = FallbackLevel.PASSTHROUGH
|
| 305 |
+
|
| 306 |
+
# Try to return something useful
|
| 307 |
+
for arg in original_args:
|
| 308 |
+
if isinstance(arg, np.ndarray):
|
| 309 |
+
# Return original image/mask
|
| 310 |
+
return {
|
| 311 |
+
'success': False,
|
| 312 |
+
'result': arg,
|
| 313 |
+
'fallback_level': self.current_level,
|
| 314 |
+
'error': str(error)
|
| 315 |
+
}
|
| 316 |
+
|
| 317 |
+
# Return empty result
|
| 318 |
+
return {
|
| 319 |
+
'success': False,
|
| 320 |
+
'result': None,
|
| 321 |
+
'fallback_level': self.current_level,
|
| 322 |
+
'error': str(error)
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
class ProcessingFallback:
|
| 327 |
+
"""Specific fallback implementations for processing operations."""
|
| 328 |
+
|
| 329 |
+
def __init__(self):
|
| 330 |
+
self.logger = setup_logger(f"{__name__}.ProcessingFallback")
|
| 331 |
+
self.quality_analyzer = QualityAnalyzer()
|
| 332 |
+
|
| 333 |
+
def basic_segmentation(self, image: np.ndarray) -> np.ndarray:
|
| 334 |
+
"""
|
| 335 |
+
Basic segmentation using traditional CV methods.
|
| 336 |
+
Used as fallback when ML models fail.
|
| 337 |
+
|
| 338 |
+
Args:
|
| 339 |
+
image: Input image
|
| 340 |
+
|
| 341 |
+
Returns:
|
| 342 |
+
Binary mask
|
| 343 |
+
"""
|
| 344 |
+
try:
|
| 345 |
+
# Convert to grayscale
|
| 346 |
+
if len(image.shape) == 3:
|
| 347 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 348 |
+
else:
|
| 349 |
+
gray = image
|
| 350 |
+
|
| 351 |
+
# Apply GrabCut for basic foreground extraction
|
| 352 |
+
mask = np.zeros(gray.shape[:2], np.uint8)
|
| 353 |
+
bgd_model = np.zeros((1, 65), np.float64)
|
| 354 |
+
fgd_model = np.zeros((1, 65), np.float64)
|
| 355 |
+
|
| 356 |
+
# Initialize rectangle (center 80% of image)
|
| 357 |
+
h, w = gray.shape[:2]
|
| 358 |
+
rect = (int(w * 0.1), int(h * 0.1),
|
| 359 |
+
int(w * 0.8), int(h * 0.8))
|
| 360 |
+
|
| 361 |
+
# Apply GrabCut
|
| 362 |
+
cv2.grabCut(image, mask, rect, bgd_model, fgd_model,
|
| 363 |
+
5, cv2.GC_INIT_WITH_RECT)
|
| 364 |
+
|
| 365 |
+
# Extract foreground
|
| 366 |
+
mask2 = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8')
|
| 367 |
+
|
| 368 |
+
return mask2
|
| 369 |
+
|
| 370 |
+
except Exception as e:
|
| 371 |
+
self.logger.error(f"Basic segmentation failed: {e}")
|
| 372 |
+
# Return center blob as last resort
|
| 373 |
+
return self._center_blob_mask(image.shape[:2])
|
| 374 |
+
|
| 375 |
+
def _center_blob_mask(self, shape: Tuple[int, int]) -> np.ndarray:
|
| 376 |
+
"""Create a center ellipse mask as ultimate fallback."""
|
| 377 |
+
h, w = shape
|
| 378 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
| 379 |
+
|
| 380 |
+
# Create center ellipse
|
| 381 |
+
center = (w // 2, h // 2)
|
| 382 |
+
axes = (w // 3, h // 3)
|
| 383 |
+
cv2.ellipse(mask, center, axes, 0, 0, 360, 255, -1)
|
| 384 |
+
|
| 385 |
+
# Smooth edges
|
| 386 |
+
mask = cv2.GaussianBlur(mask, (21, 21), 10)
|
| 387 |
+
_, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
|
| 388 |
+
|
| 389 |
+
return mask
|
| 390 |
+
|
| 391 |
+
def basic_matting(self, image: np.ndarray,
|
| 392 |
+
mask: np.ndarray) -> np.ndarray:
|
| 393 |
+
"""
|
| 394 |
+
Basic matting using morphological operations.
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
image: Input image
|
| 398 |
+
mask: Binary mask
|
| 399 |
+
|
| 400 |
+
Returns:
|
| 401 |
+
Alpha matte
|
| 402 |
+
"""
|
| 403 |
+
try:
|
| 404 |
+
# Ensure uint8
|
| 405 |
+
if mask.dtype != np.uint8:
|
| 406 |
+
mask = (mask * 255).astype(np.uint8)
|
| 407 |
+
|
| 408 |
+
# Morphological smoothing
|
| 409 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 410 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
| 411 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
|
| 412 |
+
|
| 413 |
+
# Edge softening
|
| 414 |
+
mask = cv2.GaussianBlur(mask, (5, 5), 2)
|
| 415 |
+
|
| 416 |
+
# Normalize to [0, 1]
|
| 417 |
+
alpha = mask.astype(np.float32) / 255.0
|
| 418 |
+
|
| 419 |
+
return alpha
|
| 420 |
+
|
| 421 |
+
except Exception as e:
|
| 422 |
+
self.logger.error(f"Basic matting failed: {e}")
|
| 423 |
+
return mask.astype(np.float32) / 255.0
|
| 424 |
+
|
| 425 |
+
def color_difference_keying(self, image: np.ndarray,
|
| 426 |
+
key_color: Optional[np.ndarray] = None,
|
| 427 |
+
threshold: float = 30) -> np.ndarray:
|
| 428 |
+
"""
|
| 429 |
+
Simple color difference keying for solid backgrounds.
|
| 430 |
+
|
| 431 |
+
Args:
|
| 432 |
+
image: Input image
|
| 433 |
+
key_color: Background color to remove
|
| 434 |
+
threshold: Color difference threshold
|
| 435 |
+
|
| 436 |
+
Returns:
|
| 437 |
+
Alpha matte
|
| 438 |
+
"""
|
| 439 |
+
try:
|
| 440 |
+
if key_color is None:
|
| 441 |
+
# Estimate background color from corners
|
| 442 |
+
h, w = image.shape[:2]
|
| 443 |
+
corners = [
|
| 444 |
+
image[0:10, 0:10],
|
| 445 |
+
image[0:10, w-10:w],
|
| 446 |
+
image[h-10:h, 0:10],
|
| 447 |
+
image[h-10:h, w-10:w]
|
| 448 |
+
]
|
| 449 |
+
key_color = np.mean([np.mean(c, axis=(0, 1)) for c in corners], axis=0)
|
| 450 |
+
|
| 451 |
+
# Calculate color difference
|
| 452 |
+
diff = np.sqrt(np.sum((image - key_color) ** 2, axis=2))
|
| 453 |
+
|
| 454 |
+
# Create mask
|
| 455 |
+
mask = (diff > threshold).astype(np.float32)
|
| 456 |
+
|
| 457 |
+
# Smooth edges
|
| 458 |
+
mask = cv2.GaussianBlur(mask, (5, 5), 2)
|
| 459 |
+
|
| 460 |
+
return mask
|
| 461 |
+
|
| 462 |
+
except Exception as e:
|
| 463 |
+
self.logger.error(f"Color keying failed: {e}")
|
| 464 |
+
return np.ones(image.shape[:2], dtype=np.float32)
|
| 465 |
+
|
| 466 |
+
def edge_based_segmentation(self, image: np.ndarray) -> np.ndarray:
|
| 467 |
+
"""
|
| 468 |
+
Edge-based segmentation as fallback.
|
| 469 |
+
|
| 470 |
+
Args:
|
| 471 |
+
image: Input image
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
Binary mask
|
| 475 |
+
"""
|
| 476 |
+
try:
|
| 477 |
+
# Convert to grayscale
|
| 478 |
+
if len(image.shape) == 3:
|
| 479 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 480 |
+
else:
|
| 481 |
+
gray = image
|
| 482 |
+
|
| 483 |
+
# Edge detection
|
| 484 |
+
edges = cv2.Canny(gray, 50, 150)
|
| 485 |
+
|
| 486 |
+
# Close contours
|
| 487 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
|
| 488 |
+
closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel, iterations=2)
|
| 489 |
+
|
| 490 |
+
# Find contours
|
| 491 |
+
contours, _ = cv2.findContours(
|
| 492 |
+
closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
# Create mask from largest contour
|
| 496 |
+
mask = np.zeros(gray.shape, dtype=np.uint8)
|
| 497 |
+
if contours:
|
| 498 |
+
largest = max(contours, key=cv2.contourArea)
|
| 499 |
+
cv2.drawContours(mask, [largest], -1, 255, -1)
|
| 500 |
+
|
| 501 |
+
return mask
|
| 502 |
+
|
| 503 |
+
except Exception as e:
|
| 504 |
+
self.logger.error(f"Edge segmentation failed: {e}")
|
| 505 |
+
return self._center_blob_mask(image.shape[:2])
|
| 506 |
+
|
| 507 |
+
def cached_result(self, cache_key: str,
|
| 508 |
+
fallback_func, *args, **kwargs) -> Any:
|
| 509 |
+
"""
|
| 510 |
+
Try to retrieve cached result or compute with fallback.
|
| 511 |
+
|
| 512 |
+
Args:
|
| 513 |
+
cache_key: Cache identifier
|
| 514 |
+
fallback_func: Function to call if not cached
|
| 515 |
+
*args, **kwargs: Function arguments
|
| 516 |
+
|
| 517 |
+
Returns:
|
| 518 |
+
Cached or computed result
|
| 519 |
+
"""
|
| 520 |
+
# Simple in-memory cache implementation
|
| 521 |
+
if not hasattr(self, '_cache'):
|
| 522 |
+
self._cache = {}
|
| 523 |
+
|
| 524 |
+
if cache_key in self._cache:
|
| 525 |
+
self.logger.info(f"Using cached result for {cache_key}")
|
| 526 |
+
return self._cache[cache_key]
|
| 527 |
+
|
| 528 |
+
try:
|
| 529 |
+
result = fallback_func(*args, **kwargs)
|
| 530 |
+
self._cache[cache_key] = result
|
| 531 |
+
|
| 532 |
+
# Limit cache size
|
| 533 |
+
if len(self._cache) > 100:
|
| 534 |
+
# Remove oldest entries
|
| 535 |
+
keys = list(self._cache.keys())
|
| 536 |
+
for key in keys[:20]:
|
| 537 |
+
del self._cache[key]
|
| 538 |
+
|
| 539 |
+
return result
|
| 540 |
+
|
| 541 |
+
except Exception as e:
|
| 542 |
+
self.logger.error(f"Cached computation failed: {e}")
|
| 543 |
+
return None
|