MogensR commited on
Commit
1c4e22d
·
1 Parent(s): 260d38d

Update core/models.py

Browse files
Files changed (1) hide show
  1. core/models.py +75 -541
core/models.py CHANGED
@@ -1,555 +1,89 @@
1
- #!/usr/bin/env python3
2
  """
3
- Model management and optimization for BackgroundFX Pro.
4
- Fixes MatAnyone quality issues and manages model loading.
5
  """
6
 
7
- from dataclasses import dataclass
8
- from enum import Enum
9
- from functools import lru_cache
10
- from pathlib import Path
11
- from typing import Dict, Any, Optional, Tuple, List
12
-
13
- import gc
14
  import logging
15
- import warnings
16
-
17
- import numpy as np
18
- import torch
19
- import torch.nn as nn
20
- import torch.nn.functional as F
21
 
22
  logger = logging.getLogger(__name__)
23
 
24
-
25
- # -------------------------------
26
- # Configuration & Caching
27
- # -------------------------------
28
-
29
- @dataclass
30
- class ModelConfig:
31
- """Configuration for model management."""
32
- sam2_checkpoint: str = "checkpoints/sam2_hiera_large.pt"
33
- sam2_config: str = "configs/sam2_hiera_l.yaml" # path to SAM2 config file
34
- matanyone_checkpoint: str = "checkpoints/matanyone_v2.pth"
35
- device: str = "cuda"
36
- dtype: torch.dtype = torch.float16
37
- optimize_memory: bool = True
38
- use_amp: bool = True
39
- cache_size: int = 5
40
- enable_quality_fixes: bool = True
41
- matanyone_enhancement: bool = True
42
- use_tensorrt: bool = False
43
- batch_size: int = 1
44
-
45
-
46
- class ModelCache:
47
- """Intelligent model caching system."""
48
-
49
- def __init__(self, max_size: int = 5):
50
- self.cache: Dict[str, Any] = {}
51
- self.max_size = max_size
52
- self.access_count: Dict[str, int] = {}
53
- self.memory_usage: Dict[str, float] = {}
54
-
55
- def add(self, key: str, model: Any, memory_size: float):
56
- """Add model to cache with memory tracking."""
57
- if len(self.cache) >= self.max_size and self.access_count:
58
- lru_key = min(self.access_count, key=self.access_count.get)
59
- self.remove(lru_key)
60
-
61
- self.cache[key] = model
62
- self.access_count[key] = 0
63
- self.memory_usage[key] = memory_size
64
-
65
- def get(self, key: str) -> Optional[Any]:
66
- """Get model from cache."""
67
- if key in self.cache:
68
- self.access_count[key] += 1
69
- return self.cache[key]
70
- return None
71
-
72
- def remove(self, key: str):
73
- """Remove model from cache and free memory."""
74
- if key in self.cache:
75
- model = self.cache[key]
76
- del self.cache[key]
77
- self.access_count.pop(key, None)
78
- self.memory_usage.pop(key, None)
79
-
80
- # Force cleanup
81
  try:
82
- del model
83
- except Exception:
84
- pass
85
- gc.collect()
86
- if torch.cuda.is_available():
87
- torch.cuda.empty_cache()
88
-
89
- def clear(self):
90
- """Clear entire cache."""
91
- for key in list(self.cache.keys()):
92
- self.remove(key)
93
-
94
-
95
- # -------------------------------
96
- # MatAnyone model (enhanced)
97
- # -------------------------------
98
-
99
- class MatAnyoneModel(nn.Module):
100
- """Enhanced MatAnyone model with quality fixes."""
101
-
102
- def __init__(self, config: ModelConfig):
103
- super().__init__()
104
- self.config = config
105
- self.base_model: Optional[nn.Module] = None
106
- self.quality_enhancer = QualityEnhancer() if config.enable_quality_fixes else None
107
- self.loaded = False
108
-
109
- def load(self):
110
- """Load MatAnyone model with optimizations."""
111
- if self.loaded:
112
- return
113
-
114
  try:
115
- checkpoint_path = Path(self.config.matanyone_checkpoint)
116
- if not checkpoint_path.exists():
117
- logger.warning(f"MatAnyone checkpoint not found at {checkpoint_path}")
118
- return
119
-
120
- # Load weights
121
- state_dict = torch.load(checkpoint_path, map_location=self.config.device)
122
-
123
- # Build model (placeholder architecture)
124
- self.base_model = self._build_matanyone_architecture()
125
-
126
- # Load filtered weights
127
- self._load_weights_safe(state_dict)
128
-
129
- # Optimize
130
- if self.config.optimize_memory:
131
- self._optimize_model()
132
-
133
- self.loaded = True
134
- logger.info("MatAnyone model loaded successfully")
135
-
136
  except Exception as e:
137
- logger.error(f"Failed to load MatAnyone model: {e}")
138
- self.loaded = False
139
-
140
- def _build_matanyone_architecture(self) -> nn.Module:
141
- """Build MatAnyone architecture (placeholder)."""
142
-
143
- class MatAnyoneBase(nn.Module):
144
- def __init__(self):
145
- super().__init__()
146
- self.encoder = nn.Sequential(
147
- nn.Conv2d(4, 64, 3, padding=1),
148
- nn.ReLU(),
149
- nn.Conv2d(64, 128, 3, stride=2, padding=1),
150
- nn.ReLU(),
151
- nn.Conv2d(128, 256, 3, stride=2, padding=1),
152
- nn.ReLU(),
153
- )
154
- self.decoder = nn.Sequential(
155
- nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
156
- nn.ReLU(),
157
- nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
158
- nn.ReLU(),
159
- nn.Conv2d(64, 4, 3, padding=1),
160
- nn.Sigmoid(),
161
- )
162
-
163
- def forward(self, x):
164
- features = self.encoder(x)
165
- output = self.decoder(features)
166
- return output
167
-
168
- model = MatAnyoneBase().to(self.config.device)
169
- if self.config.dtype == torch.float16 and "cuda" in str(self.config.device).lower() and torch.cuda.is_available():
170
- model = model.half()
171
- return model
172
-
173
- def _load_weights_safe(self, state_dict: Dict):
174
- """Safely load weights with compatibility handling."""
175
- if self.base_model is None:
176
- return
177
-
178
- model_dict = self.base_model.state_dict()
179
-
180
- compatible_dict = {}
181
- for k, v in state_dict.items():
182
- k_clean = k[7:] if k.startswith("module.") else k
183
- if k_clean in model_dict and model_dict[k_clean].shape == v.shape:
184
- compatible_dict[k_clean] = v
185
- else:
186
- logger.warning(f"Skipping incompatible weight: {k}")
187
-
188
- model_dict.update(compatible_dict)
189
- self.base_model.load_state_dict(model_dict, strict=False)
190
- logger.info(f"Loaded {len(compatible_dict)}/{len(state_dict)} weights")
191
-
192
- def _optimize_model(self):
193
- """Optimize model for inference."""
194
- if self.base_model is None:
195
- return
196
-
197
- self.base_model.eval()
198
-
199
- for p in self.base_model.parameters():
200
- p.requires_grad = False
201
-
202
- if self.config.use_tensorrt:
203
- try:
204
- self._optimize_with_tensorrt()
205
- except Exception as e:
206
- logger.warning(f"TensorRT optimization failed: {e}")
207
-
208
- def _optimize_with_tensorrt(self):
209
- """Placeholder for optional TensorRT optimization."""
210
- raise NotImplementedError("TensorRT path not implemented")
211
-
212
- def forward(self, image: torch.Tensor, mask: torch.Tensor) -> Dict[str, torch.Tensor]:
213
- """Enhanced forward pass with quality fixes."""
214
- if not self.loaded:
215
- self.load()
216
-
217
- if self.base_model is None:
218
- return {"alpha": mask.unsqueeze(1), "foreground": image, "confidence": torch.tensor([0.0], device=image.device)}
219
-
220
- # Concatenate image (3ch) + mask (1ch) => 4ch
221
- x = torch.cat([image, mask.unsqueeze(1)], dim=1)
222
-
223
- # Quality enhancements
224
- if self.config.matanyone_enhancement:
225
- x = self._preprocess_input(x)
226
-
227
- amp_enabled = self.config.use_amp and torch.cuda.is_available() and "cuda" in str(self.config.device).lower()
228
- with torch.cuda.amp.autocast(enabled=amp_enabled):
229
- output = self.base_model(x)
230
-
231
- alpha = output[:, 3:4, :, :]
232
- foreground = output[:, :3, :, :]
233
-
234
- if self.quality_enhancer:
235
- alpha = self.quality_enhancer.enhance_alpha(alpha, mask)
236
- foreground = self.quality_enhancer.enhance_foreground(foreground, image)
237
-
238
- alpha = self._fix_matanyone_artifacts(alpha, mask)
239
-
240
  return {
241
- "alpha": alpha,
242
- "foreground": foreground,
243
- "confidence": self._compute_confidence(alpha, mask),
244
- }
245
-
246
- def _preprocess_input(self, x: torch.Tensor) -> torch.Tensor:
247
- """Preprocess input to improve MatAnyone quality."""
248
- if x.shape[2] > 64:
249
- x = self._bilateral_filter_torch(x)
250
- x = torch.clamp(x, 0, 1)
251
-
252
- # Enhance mask edges (last channel)
253
- mask_channel = x[:, 3:4, :, :]
254
- mask_enhanced = self._enhance_mask_edges(mask_channel)
255
- x = torch.cat([x[:, :3, :, :], mask_enhanced], dim=1)
256
- return x
257
-
258
- def _fix_matanyone_artifacts(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
259
- """Fix common MatAnyone artifacts."""
260
- alpha = self._fix_edge_bleeding(alpha, original_mask)
261
- alpha = self._fix_transparency_issues(alpha)
262
- alpha = self._ensure_mask_consistency(alpha, original_mask)
263
- return alpha
264
-
265
- def _fix_edge_bleeding(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
266
- """Fix edge bleeding artifacts."""
267
- edges = self._detect_edges_torch(original_mask)
268
- edge_mask = F.max_pool2d(edges, kernel_size=5, stride=1, padding=2)
269
-
270
- alpha_refined = alpha.clone()
271
- edge_region = edge_mask > 0.1
272
- if edge_region.any():
273
- alpha_refined[edge_region] = (
274
- 0.7 * alpha[edge_region] + 0.3 * original_mask.unsqueeze(1).expand_as(alpha)[edge_region]
275
- )
276
- return alpha_refined
277
-
278
- def _fix_transparency_issues(self, alpha: torch.Tensor) -> torch.Tensor:
279
- """Fix transparency artifacts."""
280
- mid_range = (alpha > 0.2) & (alpha < 0.8)
281
- alpha_fixed = alpha.clone()
282
- alpha_fixed[mid_range] = torch.where(
283
- alpha[mid_range] > 0.5,
284
- torch.clamp(alpha[mid_range] * 1.2, max=1.0),
285
- torch.clamp(alpha[mid_range] * 0.8, min=0.0),
286
- )
287
- alpha_fixed = F.gaussian_blur(alpha_fixed, kernel_size=(3, 3))
288
- return alpha_fixed
289
-
290
- def _ensure_mask_consistency(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
291
- """Ensure consistency with original mask."""
292
- if original_mask.dim() == 2:
293
- original_mask = original_mask.unsqueeze(0).unsqueeze(0)
294
- elif original_mask.dim() == 3:
295
- original_mask = original_mask.unsqueeze(1)
296
-
297
- alpha = torch.where(original_mask < 0.1, torch.zeros_like(alpha), alpha)
298
- alpha = torch.where(original_mask > 0.9, torch.ones_like(alpha) * 0.95, alpha)
299
- return alpha
300
-
301
- def _compute_confidence(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
302
- """Compute confidence score for the output."""
303
- if original_mask.dim() < alpha.dim():
304
- original_mask = original_mask.unsqueeze(1).expand_as(alpha)
305
- diff = torch.abs(alpha - original_mask)
306
- confidence = 1.0 - torch.mean(diff, dim=(1, 2, 3))
307
- return confidence
308
-
309
- def _bilateral_filter_torch(self, x: torch.Tensor) -> torch.Tensor:
310
- """Approximate bilateral filter via Gaussian blur."""
311
- return F.gaussian_blur(x, kernel_size=(5, 5))
312
-
313
- def _enhance_mask_edges(self, mask: torch.Tensor) -> torch.Tensor:
314
- """Enhance edges in mask channel."""
315
- edges = self._detect_edges_torch(mask)
316
- enhanced = torch.clamp(mask + 0.3 * edges, 0, 1)
317
- return enhanced
318
-
319
- def _detect_edges_torch(self, x: torch.Tensor) -> torch.Tensor:
320
- """Detect edges using Sobel filters."""
321
- sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
322
- sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
323
- edges_x = F.conv2d(x, sobel_x, padding=1)
324
- edges_y = F.conv2d(x, sobel_y, padding=1)
325
- edges = torch.sqrt(edges_x ** 2 + edges_y ** 2)
326
- return edges
327
-
328
-
329
- # -------------------------------
330
- # SAM2 wrapper
331
- # -------------------------------
332
-
333
- class SAM2Model:
334
- """SAM2 model wrapper with optimizations."""
335
-
336
- def __init__(self, config: ModelConfig):
337
- self.config = config
338
- self.model = None
339
- self.predictor = None
340
- self.loaded = False
341
-
342
- def load(self):
343
- """Load SAM2 model."""
344
- if self.loaded:
345
- return
346
-
347
- try:
348
- from sam2.build_sam import build_sam2
349
- from sam2.sam2_image_predictor import SAM2ImagePredictor
350
-
351
- self.model = build_sam2(
352
- config_file=self.config.sam2_config,
353
- ckpt_path=self.config.sam2_checkpoint,
354
- device=self.config.device,
355
- )
356
- self.predictor = SAM2ImagePredictor(self.model)
357
-
358
- self.loaded = True
359
- logger.info("SAM2 model loaded successfully")
360
-
361
- except Exception as e:
362
- logger.error(f"Failed to load SAM2 model: {e}")
363
- self.loaded = False
364
-
365
- def predict(self, image: np.ndarray, prompts: Optional[Dict] = None) -> np.ndarray:
366
- """Generate segmentation mask."""
367
- if not self.loaded:
368
- self.load()
369
-
370
- if self.predictor is None:
371
- return np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
372
-
373
- self.predictor.set_image(image)
374
-
375
- if prompts:
376
- masks, scores, _ = self.predictor.predict(
377
- point_coords=prompts.get("points"),
378
- point_labels=prompts.get("labels"),
379
- box=prompts.get("box"),
380
- multimask_output=True,
381
- )
382
- mask = masks[int(np.argmax(scores))]
383
- else:
384
- # Fallback automatic segmentation (API may differ by version)
385
- try:
386
- masks = self.predictor.generate_auto_masks(image)
387
- mask = masks[0] if len(masks) > 0 else np.zeros_like(image[:, :, 0])
388
- except Exception:
389
- # As a conservative fallback, return empty mask
390
- mask = np.zeros_like(image[:, :, 0])
391
-
392
- return mask
393
-
394
-
395
- # -------------------------------
396
- # Quality enhancer
397
- # -------------------------------
398
-
399
- class QualityEnhancer(nn.Module):
400
- """Neural quality enhancement module."""
401
-
402
- def __init__(self):
403
- super().__init__()
404
- self.alpha_refiner = nn.Sequential(
405
- nn.Conv2d(1, 16, 3, padding=1),
406
- nn.ReLU(),
407
- nn.Conv2d(16, 16, 3, padding=1),
408
- nn.ReLU(),
409
- nn.Conv2d(16, 1, 3, padding=1),
410
- nn.Sigmoid(),
411
- )
412
-
413
- self.foreground_enhancer = nn.Sequential(
414
- nn.Conv2d(3, 32, 3, padding=1),
415
- nn.ReLU(),
416
- nn.Conv2d(32, 32, 3, padding=1),
417
- nn.ReLU(),
418
- nn.Conv2d(32, 3, 3, padding=1),
419
- nn.Tanh(),
420
- )
421
-
422
- def enhance_alpha(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
423
- """Enhance alpha channel quality."""
424
- refined = self.alpha_refiner(alpha)
425
- enhanced = torch.clamp(0.7 * refined + 0.3 * alpha, 0, 1)
426
- return enhanced
427
-
428
- def enhance_foreground(self, foreground: torch.Tensor, original_image: torch.Tensor) -> torch.Tensor:
429
- """Enhance foreground quality."""
430
- residual = self.foreground_enhancer(foreground)
431
- enhanced = torch.clamp(foreground + 0.1 * residual, -1, 1)
432
- # If inputs are [0,1], clamp to [0,1]
433
- if foreground.min() >= 0.0 and foreground.max() <= 1.0:
434
- enhanced = torch.clamp(enhanced, 0.0, 1.0)
435
- return enhanced
436
-
437
-
438
- # -------------------------------
439
- # Model Manager
440
- # -------------------------------
441
-
442
- class ModelManager:
443
- """Central model management system."""
444
-
445
- def __init__(self, config: Optional[ModelConfig] = None):
446
- self.config = config or ModelConfig()
447
- self.cache = ModelCache(max_size=self.config.cache_size)
448
-
449
- # Instantiate default models
450
- self.sam2 = SAM2Model(self.config)
451
- self.matanyone = MatAnyoneModel(self.config)
452
-
453
- def load_all(self):
454
- """Load all models."""
455
- logger.info("Loading all models...")
456
- self.sam2.load()
457
- self.matanyone.load()
458
- logger.info("All models loaded")
459
-
460
- def get_sam2(self) -> 'SAM2Model':
461
- """Get SAM2 model (lazy-loaded)."""
462
- if not self.sam2.loaded:
463
- self.sam2.load()
464
- return self.sam2
465
-
466
- def get_matanyone(self) -> 'MatAnyoneModel':
467
- """Get MatAnyone model (lazy-loaded)."""
468
- if not self.matanyone.loaded:
469
- self.matanyone.load()
470
- return self.matanyone
471
-
472
- def process_frame(self, image: np.ndarray, mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
473
- """Process single frame through the pipeline."""
474
- image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
475
- image_tensor = image_tensor.to(self.config.device)
476
-
477
- if mask is None:
478
- mask = self.sam2.predict(image)
479
-
480
- mask_tensor = torch.from_numpy(mask).float().to(self.config.device)
481
-
482
- result = self.matanyone(image_tensor, mask_tensor)
483
-
484
- output = {
485
- "alpha": result["alpha"].squeeze().cpu().numpy(),
486
- "foreground": (result["foreground"].squeeze().permute(1, 2, 0).cpu().numpy() * 255.0),
487
- "confidence": result["confidence"].detach().cpu().numpy(),
488
  }
489
- return output
490
-
491
- def cleanup(self):
492
- """Cleanup models and free memory."""
493
- self.cache.clear()
494
- gc.collect()
495
- if torch.cuda.is_available():
496
- torch.cuda.empty_cache()
497
-
498
-
499
- # -------------------------------
500
- # ModelType / ModelFactory (compat)
501
- # -------------------------------
502
-
503
- class ModelType(Enum):
504
- SAM2 = "sam2"
505
- MATANYONE = "matanyone"
506
-
507
-
508
- class ModelFactory:
509
- """
510
- Lightweight factory that returns cached model instances by type.
511
- Kept for backward compatibility with modules importing from core.models.
512
- """
513
-
514
- def __init__(self, config: Optional[ModelConfig] = None):
515
- self.config = config or ModelConfig()
516
- self._instances: Dict[ModelType, Any] = {}
517
-
518
- def get(self, model_type: 'ModelType | str'):
519
- """Return (and cache) a model instance for the given type."""
520
- if isinstance(model_type, str):
521
- try:
522
- model_type = ModelType(model_type.lower())
523
- except Exception:
524
- raise ValueError(f"Unknown model type: {model_type}")
525
-
526
- if model_type == ModelType.SAM2:
527
- if model_type not in self._instances:
528
- self._instances[model_type] = SAM2Model(self.config)
529
- return self._instances[model_type]
530
-
531
- if model_type == ModelType.MATANYONE:
532
- if model_type not in self._instances:
533
- self._instances[model_type] = MatAnyoneModel(self.config)
534
- return self._instances[model_type]
535
-
536
- raise ValueError(f"Unsupported model type: {model_type}")
537
-
538
- # Alias for older code
539
- create = get
540
-
541
 
542
- # -------------------------------
543
- # Exports
544
- # -------------------------------
 
545
 
546
- __all__ = [
547
- "ModelManager",
548
- "SAM2Model",
549
- "MatAnyoneModel",
550
- "ModelConfig",
551
- "ModelCache",
552
- "QualityEnhancer",
553
- "ModelType",
554
- "ModelFactory",
555
- ]
 
 
1
  """
2
+ Core Models Module - Simplified redirect to working model loader
 
3
  """
4
 
 
 
 
 
 
 
 
5
  import logging
 
 
 
 
 
 
6
 
7
  logger = logging.getLogger(__name__)
8
 
9
+ class ModelManager:
10
+ """
11
+ Compatibility wrapper that redirects to the working ModelLoader
12
+ Provides the same interface that CoreVideoProcessor expects
13
+ """
14
+
15
+ def __init__(self):
16
+ self._loader = None
17
+ self._device_mgr = None
18
+ self._memory_mgr = None
19
+
20
+ def _get_loader(self):
21
+ """Lazy initialization of model loader"""
22
+ if self._loader is None:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  try:
24
+ from models.loaders.model_loader import ModelLoader
25
+ from utils.hardware.device_manager import DeviceManager
26
+ from utils.system.memory_manager import MemoryManager
27
+
28
+ self._device_mgr = DeviceManager()
29
+ self._memory_mgr = MemoryManager()
30
+ self._loader = ModelLoader(self._device_mgr, self._memory_mgr)
31
+
32
+ except ImportError as e:
33
+ logger.error(f"Failed to import ModelLoader dependencies: {e}")
34
+ # Create a dummy loader that returns None for everything
35
+ class DummyLoader:
36
+ def get_sam2(self): return None
37
+ def get_matanyone(self): return None
38
+ def load_all_models(self, *args, **kwargs): return None, None
39
+ def cleanup(self): pass
40
+
41
+ self._loader = DummyLoader()
42
+
43
+ return self._loader
44
+
45
+ def load_all(self):
46
+ """Load all models (SAM2 and MatAnyone)"""
 
 
 
 
 
 
 
 
 
47
  try:
48
+ loader = self._get_loader()
49
+ sam2, matanyone = loader.load_all_models()
50
+ logger.info(f"Models loaded - SAM2: {sam2 is not None}, MatAnyone: {matanyone is not None}")
51
+ return sam2, matanyone
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  except Exception as e:
53
+ logger.error(f"Failed to load models: {e}")
54
+ return None, None
55
+
56
+ def get_sam2(self):
57
+ """Get SAM2 model/predictor"""
58
+ loader = self._get_loader()
59
+ return loader.get_sam2() if hasattr(loader, 'get_sam2') else None
60
+
61
+ def get_matanyone(self):
62
+ """Get MatAnyone model"""
63
+ loader = self._get_loader()
64
+ return loader.get_matanyone() if hasattr(loader, 'get_matanyone') else None
65
+
66
+ def cleanup(self):
67
+ """Cleanup models and free memory"""
68
+ loader = self._get_loader()
69
+ if hasattr(loader, 'cleanup'):
70
+ loader.cleanup()
71
+
72
+ def process_frame(self, image, mask=None):
73
+ """Process a single frame - for compatibility"""
74
+ # This method was in the old core/models.py
75
+ # We'll just return a dummy result since the actual processing
76
+ # happens in CoreVideoProcessor
77
+ logger.warning("ModelManager.process_frame called - this is deprecated")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  return {
79
+ "alpha": mask if mask is not None else image[:,:,0],
80
+ "foreground": image,
81
+ "confidence": [0.5]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ # For backward compatibility - some code might import these directly
85
+ ModelType = None # Not needed with new system
86
+ ModelFactory = ModelManager # Alias for compatibility
87
+ ModelConfig = None # Configuration now handled in model_loader.py
88
 
89
+ __all__ = ['ModelManager']