Update core/models.py
Browse files- core/models.py +75 -541
core/models.py
CHANGED
|
@@ -1,555 +1,89 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
-
Fixes MatAnyone quality issues and manages model loading.
|
| 5 |
"""
|
| 6 |
|
| 7 |
-
from dataclasses import dataclass
|
| 8 |
-
from enum import Enum
|
| 9 |
-
from functools import lru_cache
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
from typing import Dict, Any, Optional, Tuple, List
|
| 12 |
-
|
| 13 |
-
import gc
|
| 14 |
import logging
|
| 15 |
-
import warnings
|
| 16 |
-
|
| 17 |
-
import numpy as np
|
| 18 |
-
import torch
|
| 19 |
-
import torch.nn as nn
|
| 20 |
-
import torch.nn.functional as F
|
| 21 |
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
use_amp: bool = True
|
| 39 |
-
cache_size: int = 5
|
| 40 |
-
enable_quality_fixes: bool = True
|
| 41 |
-
matanyone_enhancement: bool = True
|
| 42 |
-
use_tensorrt: bool = False
|
| 43 |
-
batch_size: int = 1
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
class ModelCache:
|
| 47 |
-
"""Intelligent model caching system."""
|
| 48 |
-
|
| 49 |
-
def __init__(self, max_size: int = 5):
|
| 50 |
-
self.cache: Dict[str, Any] = {}
|
| 51 |
-
self.max_size = max_size
|
| 52 |
-
self.access_count: Dict[str, int] = {}
|
| 53 |
-
self.memory_usage: Dict[str, float] = {}
|
| 54 |
-
|
| 55 |
-
def add(self, key: str, model: Any, memory_size: float):
|
| 56 |
-
"""Add model to cache with memory tracking."""
|
| 57 |
-
if len(self.cache) >= self.max_size and self.access_count:
|
| 58 |
-
lru_key = min(self.access_count, key=self.access_count.get)
|
| 59 |
-
self.remove(lru_key)
|
| 60 |
-
|
| 61 |
-
self.cache[key] = model
|
| 62 |
-
self.access_count[key] = 0
|
| 63 |
-
self.memory_usage[key] = memory_size
|
| 64 |
-
|
| 65 |
-
def get(self, key: str) -> Optional[Any]:
|
| 66 |
-
"""Get model from cache."""
|
| 67 |
-
if key in self.cache:
|
| 68 |
-
self.access_count[key] += 1
|
| 69 |
-
return self.cache[key]
|
| 70 |
-
return None
|
| 71 |
-
|
| 72 |
-
def remove(self, key: str):
|
| 73 |
-
"""Remove model from cache and free memory."""
|
| 74 |
-
if key in self.cache:
|
| 75 |
-
model = self.cache[key]
|
| 76 |
-
del self.cache[key]
|
| 77 |
-
self.access_count.pop(key, None)
|
| 78 |
-
self.memory_usage.pop(key, None)
|
| 79 |
-
|
| 80 |
-
# Force cleanup
|
| 81 |
try:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
self.base_model: Optional[nn.Module] = None
|
| 106 |
-
self.quality_enhancer = QualityEnhancer() if config.enable_quality_fixes else None
|
| 107 |
-
self.loaded = False
|
| 108 |
-
|
| 109 |
-
def load(self):
|
| 110 |
-
"""Load MatAnyone model with optimizations."""
|
| 111 |
-
if self.loaded:
|
| 112 |
-
return
|
| 113 |
-
|
| 114 |
try:
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
# Load weights
|
| 121 |
-
state_dict = torch.load(checkpoint_path, map_location=self.config.device)
|
| 122 |
-
|
| 123 |
-
# Build model (placeholder architecture)
|
| 124 |
-
self.base_model = self._build_matanyone_architecture()
|
| 125 |
-
|
| 126 |
-
# Load filtered weights
|
| 127 |
-
self._load_weights_safe(state_dict)
|
| 128 |
-
|
| 129 |
-
# Optimize
|
| 130 |
-
if self.config.optimize_memory:
|
| 131 |
-
self._optimize_model()
|
| 132 |
-
|
| 133 |
-
self.loaded = True
|
| 134 |
-
logger.info("MatAnyone model loaded successfully")
|
| 135 |
-
|
| 136 |
except Exception as e:
|
| 137 |
-
logger.error(f"Failed to load
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
def
|
| 141 |
-
"""
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
def forward(self, x):
|
| 164 |
-
features = self.encoder(x)
|
| 165 |
-
output = self.decoder(features)
|
| 166 |
-
return output
|
| 167 |
-
|
| 168 |
-
model = MatAnyoneBase().to(self.config.device)
|
| 169 |
-
if self.config.dtype == torch.float16 and "cuda" in str(self.config.device).lower() and torch.cuda.is_available():
|
| 170 |
-
model = model.half()
|
| 171 |
-
return model
|
| 172 |
-
|
| 173 |
-
def _load_weights_safe(self, state_dict: Dict):
|
| 174 |
-
"""Safely load weights with compatibility handling."""
|
| 175 |
-
if self.base_model is None:
|
| 176 |
-
return
|
| 177 |
-
|
| 178 |
-
model_dict = self.base_model.state_dict()
|
| 179 |
-
|
| 180 |
-
compatible_dict = {}
|
| 181 |
-
for k, v in state_dict.items():
|
| 182 |
-
k_clean = k[7:] if k.startswith("module.") else k
|
| 183 |
-
if k_clean in model_dict and model_dict[k_clean].shape == v.shape:
|
| 184 |
-
compatible_dict[k_clean] = v
|
| 185 |
-
else:
|
| 186 |
-
logger.warning(f"Skipping incompatible weight: {k}")
|
| 187 |
-
|
| 188 |
-
model_dict.update(compatible_dict)
|
| 189 |
-
self.base_model.load_state_dict(model_dict, strict=False)
|
| 190 |
-
logger.info(f"Loaded {len(compatible_dict)}/{len(state_dict)} weights")
|
| 191 |
-
|
| 192 |
-
def _optimize_model(self):
|
| 193 |
-
"""Optimize model for inference."""
|
| 194 |
-
if self.base_model is None:
|
| 195 |
-
return
|
| 196 |
-
|
| 197 |
-
self.base_model.eval()
|
| 198 |
-
|
| 199 |
-
for p in self.base_model.parameters():
|
| 200 |
-
p.requires_grad = False
|
| 201 |
-
|
| 202 |
-
if self.config.use_tensorrt:
|
| 203 |
-
try:
|
| 204 |
-
self._optimize_with_tensorrt()
|
| 205 |
-
except Exception as e:
|
| 206 |
-
logger.warning(f"TensorRT optimization failed: {e}")
|
| 207 |
-
|
| 208 |
-
def _optimize_with_tensorrt(self):
|
| 209 |
-
"""Placeholder for optional TensorRT optimization."""
|
| 210 |
-
raise NotImplementedError("TensorRT path not implemented")
|
| 211 |
-
|
| 212 |
-
def forward(self, image: torch.Tensor, mask: torch.Tensor) -> Dict[str, torch.Tensor]:
|
| 213 |
-
"""Enhanced forward pass with quality fixes."""
|
| 214 |
-
if not self.loaded:
|
| 215 |
-
self.load()
|
| 216 |
-
|
| 217 |
-
if self.base_model is None:
|
| 218 |
-
return {"alpha": mask.unsqueeze(1), "foreground": image, "confidence": torch.tensor([0.0], device=image.device)}
|
| 219 |
-
|
| 220 |
-
# Concatenate image (3ch) + mask (1ch) => 4ch
|
| 221 |
-
x = torch.cat([image, mask.unsqueeze(1)], dim=1)
|
| 222 |
-
|
| 223 |
-
# Quality enhancements
|
| 224 |
-
if self.config.matanyone_enhancement:
|
| 225 |
-
x = self._preprocess_input(x)
|
| 226 |
-
|
| 227 |
-
amp_enabled = self.config.use_amp and torch.cuda.is_available() and "cuda" in str(self.config.device).lower()
|
| 228 |
-
with torch.cuda.amp.autocast(enabled=amp_enabled):
|
| 229 |
-
output = self.base_model(x)
|
| 230 |
-
|
| 231 |
-
alpha = output[:, 3:4, :, :]
|
| 232 |
-
foreground = output[:, :3, :, :]
|
| 233 |
-
|
| 234 |
-
if self.quality_enhancer:
|
| 235 |
-
alpha = self.quality_enhancer.enhance_alpha(alpha, mask)
|
| 236 |
-
foreground = self.quality_enhancer.enhance_foreground(foreground, image)
|
| 237 |
-
|
| 238 |
-
alpha = self._fix_matanyone_artifacts(alpha, mask)
|
| 239 |
-
|
| 240 |
return {
|
| 241 |
-
"alpha":
|
| 242 |
-
"foreground":
|
| 243 |
-
"confidence":
|
| 244 |
-
}
|
| 245 |
-
|
| 246 |
-
def _preprocess_input(self, x: torch.Tensor) -> torch.Tensor:
|
| 247 |
-
"""Preprocess input to improve MatAnyone quality."""
|
| 248 |
-
if x.shape[2] > 64:
|
| 249 |
-
x = self._bilateral_filter_torch(x)
|
| 250 |
-
x = torch.clamp(x, 0, 1)
|
| 251 |
-
|
| 252 |
-
# Enhance mask edges (last channel)
|
| 253 |
-
mask_channel = x[:, 3:4, :, :]
|
| 254 |
-
mask_enhanced = self._enhance_mask_edges(mask_channel)
|
| 255 |
-
x = torch.cat([x[:, :3, :, :], mask_enhanced], dim=1)
|
| 256 |
-
return x
|
| 257 |
-
|
| 258 |
-
def _fix_matanyone_artifacts(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
|
| 259 |
-
"""Fix common MatAnyone artifacts."""
|
| 260 |
-
alpha = self._fix_edge_bleeding(alpha, original_mask)
|
| 261 |
-
alpha = self._fix_transparency_issues(alpha)
|
| 262 |
-
alpha = self._ensure_mask_consistency(alpha, original_mask)
|
| 263 |
-
return alpha
|
| 264 |
-
|
| 265 |
-
def _fix_edge_bleeding(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
|
| 266 |
-
"""Fix edge bleeding artifacts."""
|
| 267 |
-
edges = self._detect_edges_torch(original_mask)
|
| 268 |
-
edge_mask = F.max_pool2d(edges, kernel_size=5, stride=1, padding=2)
|
| 269 |
-
|
| 270 |
-
alpha_refined = alpha.clone()
|
| 271 |
-
edge_region = edge_mask > 0.1
|
| 272 |
-
if edge_region.any():
|
| 273 |
-
alpha_refined[edge_region] = (
|
| 274 |
-
0.7 * alpha[edge_region] + 0.3 * original_mask.unsqueeze(1).expand_as(alpha)[edge_region]
|
| 275 |
-
)
|
| 276 |
-
return alpha_refined
|
| 277 |
-
|
| 278 |
-
def _fix_transparency_issues(self, alpha: torch.Tensor) -> torch.Tensor:
|
| 279 |
-
"""Fix transparency artifacts."""
|
| 280 |
-
mid_range = (alpha > 0.2) & (alpha < 0.8)
|
| 281 |
-
alpha_fixed = alpha.clone()
|
| 282 |
-
alpha_fixed[mid_range] = torch.where(
|
| 283 |
-
alpha[mid_range] > 0.5,
|
| 284 |
-
torch.clamp(alpha[mid_range] * 1.2, max=1.0),
|
| 285 |
-
torch.clamp(alpha[mid_range] * 0.8, min=0.0),
|
| 286 |
-
)
|
| 287 |
-
alpha_fixed = F.gaussian_blur(alpha_fixed, kernel_size=(3, 3))
|
| 288 |
-
return alpha_fixed
|
| 289 |
-
|
| 290 |
-
def _ensure_mask_consistency(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
|
| 291 |
-
"""Ensure consistency with original mask."""
|
| 292 |
-
if original_mask.dim() == 2:
|
| 293 |
-
original_mask = original_mask.unsqueeze(0).unsqueeze(0)
|
| 294 |
-
elif original_mask.dim() == 3:
|
| 295 |
-
original_mask = original_mask.unsqueeze(1)
|
| 296 |
-
|
| 297 |
-
alpha = torch.where(original_mask < 0.1, torch.zeros_like(alpha), alpha)
|
| 298 |
-
alpha = torch.where(original_mask > 0.9, torch.ones_like(alpha) * 0.95, alpha)
|
| 299 |
-
return alpha
|
| 300 |
-
|
| 301 |
-
def _compute_confidence(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
|
| 302 |
-
"""Compute confidence score for the output."""
|
| 303 |
-
if original_mask.dim() < alpha.dim():
|
| 304 |
-
original_mask = original_mask.unsqueeze(1).expand_as(alpha)
|
| 305 |
-
diff = torch.abs(alpha - original_mask)
|
| 306 |
-
confidence = 1.0 - torch.mean(diff, dim=(1, 2, 3))
|
| 307 |
-
return confidence
|
| 308 |
-
|
| 309 |
-
def _bilateral_filter_torch(self, x: torch.Tensor) -> torch.Tensor:
|
| 310 |
-
"""Approximate bilateral filter via Gaussian blur."""
|
| 311 |
-
return F.gaussian_blur(x, kernel_size=(5, 5))
|
| 312 |
-
|
| 313 |
-
def _enhance_mask_edges(self, mask: torch.Tensor) -> torch.Tensor:
|
| 314 |
-
"""Enhance edges in mask channel."""
|
| 315 |
-
edges = self._detect_edges_torch(mask)
|
| 316 |
-
enhanced = torch.clamp(mask + 0.3 * edges, 0, 1)
|
| 317 |
-
return enhanced
|
| 318 |
-
|
| 319 |
-
def _detect_edges_torch(self, x: torch.Tensor) -> torch.Tensor:
|
| 320 |
-
"""Detect edges using Sobel filters."""
|
| 321 |
-
sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
|
| 322 |
-
sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
|
| 323 |
-
edges_x = F.conv2d(x, sobel_x, padding=1)
|
| 324 |
-
edges_y = F.conv2d(x, sobel_y, padding=1)
|
| 325 |
-
edges = torch.sqrt(edges_x ** 2 + edges_y ** 2)
|
| 326 |
-
return edges
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
# -------------------------------
|
| 330 |
-
# SAM2 wrapper
|
| 331 |
-
# -------------------------------
|
| 332 |
-
|
| 333 |
-
class SAM2Model:
|
| 334 |
-
"""SAM2 model wrapper with optimizations."""
|
| 335 |
-
|
| 336 |
-
def __init__(self, config: ModelConfig):
|
| 337 |
-
self.config = config
|
| 338 |
-
self.model = None
|
| 339 |
-
self.predictor = None
|
| 340 |
-
self.loaded = False
|
| 341 |
-
|
| 342 |
-
def load(self):
|
| 343 |
-
"""Load SAM2 model."""
|
| 344 |
-
if self.loaded:
|
| 345 |
-
return
|
| 346 |
-
|
| 347 |
-
try:
|
| 348 |
-
from sam2.build_sam import build_sam2
|
| 349 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 350 |
-
|
| 351 |
-
self.model = build_sam2(
|
| 352 |
-
config_file=self.config.sam2_config,
|
| 353 |
-
ckpt_path=self.config.sam2_checkpoint,
|
| 354 |
-
device=self.config.device,
|
| 355 |
-
)
|
| 356 |
-
self.predictor = SAM2ImagePredictor(self.model)
|
| 357 |
-
|
| 358 |
-
self.loaded = True
|
| 359 |
-
logger.info("SAM2 model loaded successfully")
|
| 360 |
-
|
| 361 |
-
except Exception as e:
|
| 362 |
-
logger.error(f"Failed to load SAM2 model: {e}")
|
| 363 |
-
self.loaded = False
|
| 364 |
-
|
| 365 |
-
def predict(self, image: np.ndarray, prompts: Optional[Dict] = None) -> np.ndarray:
|
| 366 |
-
"""Generate segmentation mask."""
|
| 367 |
-
if not self.loaded:
|
| 368 |
-
self.load()
|
| 369 |
-
|
| 370 |
-
if self.predictor is None:
|
| 371 |
-
return np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)
|
| 372 |
-
|
| 373 |
-
self.predictor.set_image(image)
|
| 374 |
-
|
| 375 |
-
if prompts:
|
| 376 |
-
masks, scores, _ = self.predictor.predict(
|
| 377 |
-
point_coords=prompts.get("points"),
|
| 378 |
-
point_labels=prompts.get("labels"),
|
| 379 |
-
box=prompts.get("box"),
|
| 380 |
-
multimask_output=True,
|
| 381 |
-
)
|
| 382 |
-
mask = masks[int(np.argmax(scores))]
|
| 383 |
-
else:
|
| 384 |
-
# Fallback automatic segmentation (API may differ by version)
|
| 385 |
-
try:
|
| 386 |
-
masks = self.predictor.generate_auto_masks(image)
|
| 387 |
-
mask = masks[0] if len(masks) > 0 else np.zeros_like(image[:, :, 0])
|
| 388 |
-
except Exception:
|
| 389 |
-
# As a conservative fallback, return empty mask
|
| 390 |
-
mask = np.zeros_like(image[:, :, 0])
|
| 391 |
-
|
| 392 |
-
return mask
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
# -------------------------------
|
| 396 |
-
# Quality enhancer
|
| 397 |
-
# -------------------------------
|
| 398 |
-
|
| 399 |
-
class QualityEnhancer(nn.Module):
|
| 400 |
-
"""Neural quality enhancement module."""
|
| 401 |
-
|
| 402 |
-
def __init__(self):
|
| 403 |
-
super().__init__()
|
| 404 |
-
self.alpha_refiner = nn.Sequential(
|
| 405 |
-
nn.Conv2d(1, 16, 3, padding=1),
|
| 406 |
-
nn.ReLU(),
|
| 407 |
-
nn.Conv2d(16, 16, 3, padding=1),
|
| 408 |
-
nn.ReLU(),
|
| 409 |
-
nn.Conv2d(16, 1, 3, padding=1),
|
| 410 |
-
nn.Sigmoid(),
|
| 411 |
-
)
|
| 412 |
-
|
| 413 |
-
self.foreground_enhancer = nn.Sequential(
|
| 414 |
-
nn.Conv2d(3, 32, 3, padding=1),
|
| 415 |
-
nn.ReLU(),
|
| 416 |
-
nn.Conv2d(32, 32, 3, padding=1),
|
| 417 |
-
nn.ReLU(),
|
| 418 |
-
nn.Conv2d(32, 3, 3, padding=1),
|
| 419 |
-
nn.Tanh(),
|
| 420 |
-
)
|
| 421 |
-
|
| 422 |
-
def enhance_alpha(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
|
| 423 |
-
"""Enhance alpha channel quality."""
|
| 424 |
-
refined = self.alpha_refiner(alpha)
|
| 425 |
-
enhanced = torch.clamp(0.7 * refined + 0.3 * alpha, 0, 1)
|
| 426 |
-
return enhanced
|
| 427 |
-
|
| 428 |
-
def enhance_foreground(self, foreground: torch.Tensor, original_image: torch.Tensor) -> torch.Tensor:
|
| 429 |
-
"""Enhance foreground quality."""
|
| 430 |
-
residual = self.foreground_enhancer(foreground)
|
| 431 |
-
enhanced = torch.clamp(foreground + 0.1 * residual, -1, 1)
|
| 432 |
-
# If inputs are [0,1], clamp to [0,1]
|
| 433 |
-
if foreground.min() >= 0.0 and foreground.max() <= 1.0:
|
| 434 |
-
enhanced = torch.clamp(enhanced, 0.0, 1.0)
|
| 435 |
-
return enhanced
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
# -------------------------------
|
| 439 |
-
# Model Manager
|
| 440 |
-
# -------------------------------
|
| 441 |
-
|
| 442 |
-
class ModelManager:
|
| 443 |
-
"""Central model management system."""
|
| 444 |
-
|
| 445 |
-
def __init__(self, config: Optional[ModelConfig] = None):
|
| 446 |
-
self.config = config or ModelConfig()
|
| 447 |
-
self.cache = ModelCache(max_size=self.config.cache_size)
|
| 448 |
-
|
| 449 |
-
# Instantiate default models
|
| 450 |
-
self.sam2 = SAM2Model(self.config)
|
| 451 |
-
self.matanyone = MatAnyoneModel(self.config)
|
| 452 |
-
|
| 453 |
-
def load_all(self):
|
| 454 |
-
"""Load all models."""
|
| 455 |
-
logger.info("Loading all models...")
|
| 456 |
-
self.sam2.load()
|
| 457 |
-
self.matanyone.load()
|
| 458 |
-
logger.info("All models loaded")
|
| 459 |
-
|
| 460 |
-
def get_sam2(self) -> 'SAM2Model':
|
| 461 |
-
"""Get SAM2 model (lazy-loaded)."""
|
| 462 |
-
if not self.sam2.loaded:
|
| 463 |
-
self.sam2.load()
|
| 464 |
-
return self.sam2
|
| 465 |
-
|
| 466 |
-
def get_matanyone(self) -> 'MatAnyoneModel':
|
| 467 |
-
"""Get MatAnyone model (lazy-loaded)."""
|
| 468 |
-
if not self.matanyone.loaded:
|
| 469 |
-
self.matanyone.load()
|
| 470 |
-
return self.matanyone
|
| 471 |
-
|
| 472 |
-
def process_frame(self, image: np.ndarray, mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
|
| 473 |
-
"""Process single frame through the pipeline."""
|
| 474 |
-
image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
| 475 |
-
image_tensor = image_tensor.to(self.config.device)
|
| 476 |
-
|
| 477 |
-
if mask is None:
|
| 478 |
-
mask = self.sam2.predict(image)
|
| 479 |
-
|
| 480 |
-
mask_tensor = torch.from_numpy(mask).float().to(self.config.device)
|
| 481 |
-
|
| 482 |
-
result = self.matanyone(image_tensor, mask_tensor)
|
| 483 |
-
|
| 484 |
-
output = {
|
| 485 |
-
"alpha": result["alpha"].squeeze().cpu().numpy(),
|
| 486 |
-
"foreground": (result["foreground"].squeeze().permute(1, 2, 0).cpu().numpy() * 255.0),
|
| 487 |
-
"confidence": result["confidence"].detach().cpu().numpy(),
|
| 488 |
}
|
| 489 |
-
return output
|
| 490 |
-
|
| 491 |
-
def cleanup(self):
|
| 492 |
-
"""Cleanup models and free memory."""
|
| 493 |
-
self.cache.clear()
|
| 494 |
-
gc.collect()
|
| 495 |
-
if torch.cuda.is_available():
|
| 496 |
-
torch.cuda.empty_cache()
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
# -------------------------------
|
| 500 |
-
# ModelType / ModelFactory (compat)
|
| 501 |
-
# -------------------------------
|
| 502 |
-
|
| 503 |
-
class ModelType(Enum):
|
| 504 |
-
SAM2 = "sam2"
|
| 505 |
-
MATANYONE = "matanyone"
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
class ModelFactory:
|
| 509 |
-
"""
|
| 510 |
-
Lightweight factory that returns cached model instances by type.
|
| 511 |
-
Kept for backward compatibility with modules importing from core.models.
|
| 512 |
-
"""
|
| 513 |
-
|
| 514 |
-
def __init__(self, config: Optional[ModelConfig] = None):
|
| 515 |
-
self.config = config or ModelConfig()
|
| 516 |
-
self._instances: Dict[ModelType, Any] = {}
|
| 517 |
-
|
| 518 |
-
def get(self, model_type: 'ModelType | str'):
|
| 519 |
-
"""Return (and cache) a model instance for the given type."""
|
| 520 |
-
if isinstance(model_type, str):
|
| 521 |
-
try:
|
| 522 |
-
model_type = ModelType(model_type.lower())
|
| 523 |
-
except Exception:
|
| 524 |
-
raise ValueError(f"Unknown model type: {model_type}")
|
| 525 |
-
|
| 526 |
-
if model_type == ModelType.SAM2:
|
| 527 |
-
if model_type not in self._instances:
|
| 528 |
-
self._instances[model_type] = SAM2Model(self.config)
|
| 529 |
-
return self._instances[model_type]
|
| 530 |
-
|
| 531 |
-
if model_type == ModelType.MATANYONE:
|
| 532 |
-
if model_type not in self._instances:
|
| 533 |
-
self._instances[model_type] = MatAnyoneModel(self.config)
|
| 534 |
-
return self._instances[model_type]
|
| 535 |
-
|
| 536 |
-
raise ValueError(f"Unsupported model type: {model_type}")
|
| 537 |
-
|
| 538 |
-
# Alias for older code
|
| 539 |
-
create = get
|
| 540 |
-
|
| 541 |
|
| 542 |
-
#
|
| 543 |
-
#
|
| 544 |
-
#
|
|
|
|
| 545 |
|
| 546 |
-
__all__ = [
|
| 547 |
-
"ModelManager",
|
| 548 |
-
"SAM2Model",
|
| 549 |
-
"MatAnyoneModel",
|
| 550 |
-
"ModelConfig",
|
| 551 |
-
"ModelCache",
|
| 552 |
-
"QualityEnhancer",
|
| 553 |
-
"ModelType",
|
| 554 |
-
"ModelFactory",
|
| 555 |
-
]
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
Core Models Module - Simplified redirect to working model loader
|
|
|
|
| 3 |
"""
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
logger = logging.getLogger(__name__)
|
| 8 |
|
| 9 |
+
class ModelManager:
|
| 10 |
+
"""
|
| 11 |
+
Compatibility wrapper that redirects to the working ModelLoader
|
| 12 |
+
Provides the same interface that CoreVideoProcessor expects
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def __init__(self):
|
| 16 |
+
self._loader = None
|
| 17 |
+
self._device_mgr = None
|
| 18 |
+
self._memory_mgr = None
|
| 19 |
+
|
| 20 |
+
def _get_loader(self):
|
| 21 |
+
"""Lazy initialization of model loader"""
|
| 22 |
+
if self._loader is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
try:
|
| 24 |
+
from models.loaders.model_loader import ModelLoader
|
| 25 |
+
from utils.hardware.device_manager import DeviceManager
|
| 26 |
+
from utils.system.memory_manager import MemoryManager
|
| 27 |
+
|
| 28 |
+
self._device_mgr = DeviceManager()
|
| 29 |
+
self._memory_mgr = MemoryManager()
|
| 30 |
+
self._loader = ModelLoader(self._device_mgr, self._memory_mgr)
|
| 31 |
+
|
| 32 |
+
except ImportError as e:
|
| 33 |
+
logger.error(f"Failed to import ModelLoader dependencies: {e}")
|
| 34 |
+
# Create a dummy loader that returns None for everything
|
| 35 |
+
class DummyLoader:
|
| 36 |
+
def get_sam2(self): return None
|
| 37 |
+
def get_matanyone(self): return None
|
| 38 |
+
def load_all_models(self, *args, **kwargs): return None, None
|
| 39 |
+
def cleanup(self): pass
|
| 40 |
+
|
| 41 |
+
self._loader = DummyLoader()
|
| 42 |
+
|
| 43 |
+
return self._loader
|
| 44 |
+
|
| 45 |
+
def load_all(self):
|
| 46 |
+
"""Load all models (SAM2 and MatAnyone)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
try:
|
| 48 |
+
loader = self._get_loader()
|
| 49 |
+
sam2, matanyone = loader.load_all_models()
|
| 50 |
+
logger.info(f"Models loaded - SAM2: {sam2 is not None}, MatAnyone: {matanyone is not None}")
|
| 51 |
+
return sam2, matanyone
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
except Exception as e:
|
| 53 |
+
logger.error(f"Failed to load models: {e}")
|
| 54 |
+
return None, None
|
| 55 |
+
|
| 56 |
+
def get_sam2(self):
|
| 57 |
+
"""Get SAM2 model/predictor"""
|
| 58 |
+
loader = self._get_loader()
|
| 59 |
+
return loader.get_sam2() if hasattr(loader, 'get_sam2') else None
|
| 60 |
+
|
| 61 |
+
def get_matanyone(self):
|
| 62 |
+
"""Get MatAnyone model"""
|
| 63 |
+
loader = self._get_loader()
|
| 64 |
+
return loader.get_matanyone() if hasattr(loader, 'get_matanyone') else None
|
| 65 |
+
|
| 66 |
+
def cleanup(self):
|
| 67 |
+
"""Cleanup models and free memory"""
|
| 68 |
+
loader = self._get_loader()
|
| 69 |
+
if hasattr(loader, 'cleanup'):
|
| 70 |
+
loader.cleanup()
|
| 71 |
+
|
| 72 |
+
def process_frame(self, image, mask=None):
|
| 73 |
+
"""Process a single frame - for compatibility"""
|
| 74 |
+
# This method was in the old core/models.py
|
| 75 |
+
# We'll just return a dummy result since the actual processing
|
| 76 |
+
# happens in CoreVideoProcessor
|
| 77 |
+
logger.warning("ModelManager.process_frame called - this is deprecated")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
return {
|
| 79 |
+
"alpha": mask if mask is not None else image[:,:,0],
|
| 80 |
+
"foreground": image,
|
| 81 |
+
"confidence": [0.5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
# For backward compatibility - some code might import these directly
|
| 85 |
+
ModelType = None # Not needed with new system
|
| 86 |
+
ModelFactory = ModelManager # Alias for compatibility
|
| 87 |
+
ModelConfig = None # Configuration now handled in model_loader.py
|
| 88 |
|
| 89 |
+
__all__ = ['ModelManager']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|