Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_pdf import PDF | |
| from qdrant_client import models, QdrantClient | |
| from sentence_transformers import SentenceTransformer | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.callbacks.manager import CallbackManager | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| from transformers import AutoTokenizer | |
| from langchain.vectorstores import Qdrant | |
| from qdrant_client.http import models | |
| from ctransformers import AutoModelForCausalLM | |
| # Loading the embedding model | |
| encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1') | |
| print("Embedding model loaded...") | |
| # Loading the LLM | |
| callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
| ''' | |
| llm = AutoModelForCausalLM.from_pretrained( | |
| "refuelai/Llama-3-Refueled", | |
| model_file="llama-2-7b-chat.Q3_K_S.gguf", | |
| model_type="llama", | |
| temperature=0.2, | |
| repetition_penalty=1.5, | |
| max_new_tokens=300, | |
| ) | |
| ''' | |
| model_id = "refuelai/Llama-3-Refueled" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| llm = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") | |
| print("LLM loaded...") | |
| def chat(files, question): | |
| def get_chunks(text): | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=250, | |
| chunk_overlap=50, | |
| length_function=len, | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| all_chunks = [] | |
| for file in files: | |
| pdf_path = file | |
| reader = PdfReader(pdf_path) | |
| text = "" | |
| num_of_pages = len(reader.pages) | |
| for page in range(num_of_pages): | |
| current_page = reader.pages[page] | |
| text += current_page.extract_text() | |
| chunks = get_chunks(text) | |
| all_chunks.extend(chunks) | |
| print(f"Total chunks: {len(all_chunks)}") | |
| print("Chunks are ready...") | |
| client = QdrantClient(path="./db") | |
| print("DB created...") | |
| client.recreate_collection( | |
| collection_name="my_facts", | |
| vectors_config=models.VectorParams( | |
| size=encoder.get_sentence_embedding_dimension(), | |
| distance=models.Distance.COSINE, | |
| ), | |
| ) | |
| print("Collection created...") | |
| li = list(range(len(all_chunks))) | |
| dic = dict(zip(li, all_chunks)) | |
| client.upload_records( | |
| collection_name="my_facts", | |
| records=[ | |
| models.Record( | |
| id=idx, | |
| vector=encoder.encode(dic[idx]).tolist(), | |
| payload={f"chunk_{idx}": dic[idx]} | |
| ) for idx in dic.keys() | |
| ], | |
| ) | |
| print("Records uploaded...") | |
| hits = client.search( | |
| collection_name="my_facts", | |
| query_vector=encoder.encode(question).tolist(), | |
| limit=3 | |
| ) | |
| context = [] | |
| for hit in hits: | |
| context.append(list(hit.payload.values())[0]) | |
| context = " ".join(context) | |
| system_prompt = """You are a helpful co-worker, you will use the provided context to answer user questions. | |
| Read the given context before answering questions and think step by step. If you cannot answer a user question based on | |
| the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question.""" | |
| B_INST, E_INST = "[INST]", "[/INST]" | |
| B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" | |
| SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS | |
| instruction = f""" | |
| Context: {context} | |
| User: {question}""" | |
| prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST | |
| print(prompt_template) | |
| result = llm(prompt_template) | |
| return result | |
| screen = gr.Interface( | |
| fn=chat, | |
| inputs=[gr.File(label="Upload PDFs", file_count="multiple"), gr.Textbox(lines=10, placeholder="Enter your question here π")], | |
| outputs=gr.Textbox(lines=10, placeholder="Your answer will be here soon π"), | |
| title="Q&A with PDFs π©π»βπ»πβπ»π‘", | |
| description="This app facilitates a conversation with PDFs uploadedπ‘", | |
| theme="soft", | |
| ) | |
| screen.launch() | |