naazimsnh02's picture
Initial deployment: Autonomous AI agent for code modernization
ec4aa90
"""
Deep code analyzer using AI with RAG and MCP integration.
Supports multiple AI providers (Gemini, Nebius, OpenAI).
"""
import os
import json
import logging
from typing import Dict, List, Optional
from src.config import AIManager, GeminiSchemas
logger = logging.getLogger(__name__)
class CodeAnalyzer:
"""
Deep analyzer for legacy code patterns using AI + RAG.
Integrates with MCP servers for enhanced analysis.
"""
def __init__(self, mcp_manager=None, search_engine=None):
"""
Initialize Code Analyzer.
Args:
mcp_manager: Optional MCPManager instance
search_engine: Optional CodeSearchEngine instance
"""
self.mcp_manager = mcp_manager
self.search_engine = search_engine
# Use centralized AI manager
self.ai_manager = AIManager()
logger.info(
f"CodeAnalyzer initialized with provider: {self.ai_manager.provider_name}, "
f"model: {self.ai_manager.model_name}"
)
async def analyze_pattern(self, files: List[str], pattern_name: str,
file_contents: Dict[str, str]) -> Dict:
"""
Deep analysis of legacy pattern with full context.
Args:
files: List of file paths to analyze
pattern_name: Name of the pattern (e.g., "MySQLdb usage")
file_contents: Dictionary mapping file paths to their contents
Returns:
Analysis result dictionary
"""
logger.info(f"Analyzing pattern: {pattern_name} in {len(files)} files")
# Check cache first (if MCP manager available)
if self.mcp_manager:
try:
from src.mcp.memory_client import MemoryMCPClient
memory_client = MemoryMCPClient(self.mcp_manager)
pattern_id = self._generate_pattern_id(pattern_name, files)
cached_analysis = await memory_client.retrieve_pattern_analysis(pattern_id)
if cached_analysis:
logger.info(f"Using cached analysis for {pattern_name}")
return cached_analysis
except Exception as e:
logger.warning(f"Could not retrieve cached analysis: {e}")
# Get context from search engine if available
context = ""
if self.search_engine:
try:
similar_files = self.search_engine.find_similar_patterns(
f"Files with {pattern_name}",
top_k=10
)
context = f"\n\nSimilar patterns found in: {', '.join([f['file_path'] for f in similar_files[:5]])}"
except Exception as e:
logger.warning(f"Could not get search context: {e}")
# Get migration guides from Tavily if available
migration_guides = ""
if self.mcp_manager:
try:
from src.mcp.search_client import SearchMCPClient
search_client = SearchMCPClient(self.mcp_manager)
# Extract technologies from pattern name
guides = await search_client.find_migration_guide(
from_tech=pattern_name.split()[0],
to_tech="modern alternative",
max_results=3
)
if guides:
migration_guides = "\n\nRelevant migration guides:\n"
for guide in guides:
migration_guides += f"- {guide['title']}: {guide['url']}\n"
except Exception as e:
logger.warning(f"Could not fetch migration guides: {e}")
# Combine file contents
code_samples = "\n\n".join([
f"=== {file_path} ===\n{content[:1000]}..." # Limit to first 1000 chars per file
for file_path, content in list(file_contents.items())[:5] # Limit to 5 files
])
# Build analysis prompt
prompt = f"""You are a senior software architect analyzing legacy code for modernization.
PATTERN TO ANALYZE: {pattern_name}
FILES AFFECTED: {', '.join(files)}
CODE SAMPLES:
{code_samples}
{context}
{migration_guides}
TASK: Provide a comprehensive analysis with:
1. **Current Implementation**: What the code currently does
2. **Issues**: Specific problems (security, performance, maintainability)
3. **Modern Recommendation**: Recommended library/pattern with version
4. **Migration Steps**: Detailed step-by-step migration plan
5. **Risk Assessment**: Potential risks and mitigation strategies
6. **Estimated Effort**: Time estimate for migration
Respond in JSON format with these exact keys:
{{
"pattern": "{pattern_name}",
"files": {json.dumps(files)},
"analysis": "detailed analysis",
"issues": ["issue1", "issue2", ...],
"recommendation": "recommended approach",
"steps": ["step1", "step2", ...],
"risks": "risk assessment",
"effort_hours": estimated_hours
}}
"""
try:
# Use JSON schema for guaranteed structure
schema = GeminiSchemas.code_analysis()
# Call AI with configured model
response_text = self.ai_manager.generate_content(
prompt=prompt,
temperature=AIManager.TEMPERATURE_PRECISE,
max_tokens=AIManager.MAX_OUTPUT_TOKENS_MEDIUM,
response_format="json",
response_schema=schema
)
# Parse JSON response
analysis = json.loads(response_text)
# Cache the analysis
if self.mcp_manager:
try:
from src.mcp.memory_client import MemoryMCPClient
memory_client = MemoryMCPClient(self.mcp_manager)
pattern_id = self._generate_pattern_id(pattern_name, files)
await memory_client.store_pattern_analysis(pattern_id, analysis)
except Exception as e:
logger.warning(f"Could not cache analysis: {e}")
logger.info(f"Analysis complete for {pattern_name}")
return analysis
except Exception as e:
logger.error(f"Error during analysis: {e}")
# Return fallback analysis
return {
"pattern": pattern_name,
"files": files,
"analysis": f"Error during analysis: {str(e)}",
"issues": ["Analysis failed"],
"recommendation": "Manual review required",
"steps": ["Review error logs", "Retry analysis"],
"risks": "High - analysis incomplete",
"effort_hours": 0
}
def _generate_pattern_id(self, pattern_name: str, files: List[str]) -> str:
"""
Generate unique ID for a pattern.
Args:
pattern_name: Name of the pattern
files: List of files
Returns:
Unique pattern ID
"""
import hashlib
# Create hash from pattern name and sorted file list
content = f"{pattern_name}:{'|'.join(sorted(files))}"
return hashlib.md5(content.encode()).hexdigest()
async def analyze_security_issues(self, file_path: str, code: str) -> Dict:
"""
Analyze code for security vulnerabilities.
Args:
file_path: Path to the file
code: Code content
Returns:
Security analysis result
"""
logger.info(f"Analyzing security issues in {file_path}")
prompt = f"""Analyze this code for security vulnerabilities:
FILE: {file_path}
CODE:
{code[:2000]}
Identify:
1. SQL injection risks
2. Hardcoded credentials
3. Insecure cryptography
4. Path traversal vulnerabilities
5. Command injection risks
6. Other security issues
Respond in JSON format:
{{
"vulnerabilities": [
{{
"type": "vulnerability type",
"severity": "critical|high|medium|low",
"line_number": estimated_line,
"description": "description",
"recommendation": "how to fix"
}}
],
"security_score": 0-100
}}
"""
try:
response_text = self.ai_manager.generate_content(
prompt=prompt,
temperature=AIManager.TEMPERATURE_PRECISE,
max_tokens=AIManager.MAX_OUTPUT_TOKENS_SMALL,
response_format="json"
)
return json.loads(response_text)
except Exception as e:
logger.error(f"Error during security analysis: {e}")
return {
"vulnerabilities": [],
"security_score": 0
}
async def suggest_refactoring(self, file_path: str, code: str) -> Dict:
"""
Suggest code refactoring improvements.
Args:
file_path: Path to the file
code: Code content
Returns:
Refactoring suggestions
"""
logger.info(f"Suggesting refactoring for {file_path}")
prompt = f"""Suggest refactoring improvements for this code:
FILE: {file_path}
CODE:
{code[:2000]}
Focus on:
1. Code duplication
2. Complex functions (high cyclomatic complexity)
3. Poor naming conventions
4. Missing error handling
5. Performance optimizations
6. Type hints and documentation
Respond in JSON format:
{{
"suggestions": [
{{
"category": "category",
"priority": "high|medium|low",
"description": "what to improve",
"benefit": "why improve it"
}}
],
"code_quality_score": 0-100
}}
"""
try:
response_text = self.ai_manager.generate_content(
prompt=prompt,
temperature=AIManager.TEMPERATURE_PRECISE,
max_tokens=AIManager.MAX_OUTPUT_TOKENS_SMALL,
response_format="json"
)
return json.loads(response_text)
except Exception as e:
logger.error(f"Error during refactoring analysis: {e}")
return {
"suggestions": [],
"code_quality_score": 0
}