Spaces:
Runtime error
Runtime error
Fixed n_searched_images=1 case
Browse files
app.py
CHANGED
|
@@ -23,10 +23,12 @@ def text_2_image(model, img_emb, img_names, img_urls, n_top_k_images):
|
|
| 23 |
if st.button("Convert"):
|
| 24 |
st.write("The image with the most similar embedding is:")
|
| 25 |
cosine_sim = get_match(model, text, img_emb)
|
| 26 |
-
|
| 27 |
-
top_k_images_indices
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
cols = st.columns(n_top_k_images)
|
| 31 |
for i, image_found in enumerate(images_found):
|
| 32 |
logger.success(f"Image match found: {image_found}")
|
|
@@ -51,11 +53,12 @@ def image_2_image(model, img_emb, img_names, img_urls,n_top_k_images):
|
|
| 51 |
if st.button("Convert"):
|
| 52 |
st.write("The image with the most similar embedding is:")
|
| 53 |
cosine_sim = get_match(model, image.convert("RGB"), img_emb)
|
| 54 |
-
|
| 55 |
-
top_k_images_indices
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
| 59 |
cols = st.columns(n_top_k_images)
|
| 60 |
for i, image_found in enumerate(images_found):
|
| 61 |
logger.success(f"Image match found: {image_found}")
|
|
|
|
| 23 |
if st.button("Convert"):
|
| 24 |
st.write("The image with the most similar embedding is:")
|
| 25 |
cosine_sim = get_match(model, text, img_emb)
|
| 26 |
+
top_k_images_indices = torch.topk(cosine_sim, n_top_k_images, 1).indices.squeeze()
|
| 27 |
+
if top_k_images_indices.nelement() == 1:
|
| 28 |
+
top_k_images_indices = [top_k_images_indices.tolist()]
|
| 29 |
+
else:
|
| 30 |
+
top_k_images_indices = top_k_images_indices.tolist()
|
| 31 |
+
images_found = [img_names[top_k_best_image] for top_k_best_image in top_k_images_indices]
|
| 32 |
cols = st.columns(n_top_k_images)
|
| 33 |
for i, image_found in enumerate(images_found):
|
| 34 |
logger.success(f"Image match found: {image_found}")
|
|
|
|
| 53 |
if st.button("Convert"):
|
| 54 |
st.write("The image with the most similar embedding is:")
|
| 55 |
cosine_sim = get_match(model, image.convert("RGB"), img_emb)
|
| 56 |
+
top_k_images_indices = torch.topk(cosine_sim, n_top_k_images, 1).indices.squeeze()
|
| 57 |
+
if top_k_images_indices.nelement() == 1:
|
| 58 |
+
top_k_images_indices = [top_k_images_indices.tolist()]
|
| 59 |
+
else:
|
| 60 |
+
top_k_images_indices = top_k_images_indices.tolist()
|
| 61 |
+
images_found = [img_names[top_k_best_image] for top_k_best_image in top_k_images_indices]
|
| 62 |
cols = st.columns(n_top_k_images)
|
| 63 |
for i, image_found in enumerate(images_found):
|
| 64 |
logger.success(f"Image match found: {image_found}")
|