File size: 20,571 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
"""LLM Cost Benchmarking Script

Measures token usage and calculates costs for cancer risk assessments
across different LLM backends.
"""

import argparse
import csv
import functools
import os
from collections import defaultdict
from collections.abc import Callable
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import Any

import requests
import yaml
from dotenv import load_dotenv
from langchain_community.callbacks.manager import get_openai_callback
from loguru import logger
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib.units import inch
from reportlab.platypus import Paragraph, SimpleDocTemplate, Spacer, Table, TableStyle

from sentinel.config import AppConfig, ModelConfig, ResourcePaths
from sentinel.factory import SentinelFactory
from sentinel.utils import load_user_file

load_dotenv()


@dataclass
class ModelPricing:
    """Pricing per 1 million tokens in USD.

    Attributes:
        input_per_million: Cost per 1M input tokens (USD)
        output_per_million: Cost per 1M output tokens (USD)
    """

    input_per_million: float
    output_per_million: float


@dataclass
class BenchmarkModelConfig:
    """Model configuration for benchmarking.

    Attributes:
        provider: Provider key (google, openai, local)
        model_name: Model identifier used by the provider
        pricing: Pricing information per 1M tokens
    """

    provider: str
    model_name: str
    pricing: ModelPricing


# Sources:
# - https://ai.google.dev/pricing
# - https://openai.com/api/pricing/
BENCHMARK_MODELS = [
    BenchmarkModelConfig(
        provider="google",
        model_name="gemini-2.5-pro",
        pricing=ModelPricing(input_per_million=1.25, output_per_million=10.00),
    ),
    BenchmarkModelConfig(
        provider="google",
        model_name="gemini-2.5-flash-lite",
        pricing=ModelPricing(input_per_million=0.1, output_per_million=0.4),
    ),
]


@dataclass
class TokenUsage:
    """Token usage statistics for a single assessment.

    Attributes:
        input_tokens: Tokens in the prompt/input
        output_tokens: Tokens in the model's response
    """

    input_tokens: int
    output_tokens: int

    @property
    def total_tokens(self) -> int:
        """Total tokens used.

        Returns:
            Sum of input and output tokens
        """
        return self.input_tokens + self.output_tokens


@dataclass
class BenchmarkResult:
    """Results from a single model/profile benchmark run.

    Attributes:
        model_name: Name of the model
        provider: Provider key (openai, google, local)
        profile_name: Name of the profile
        token_usage: Token usage statistics
        cost: Cost in USD
    """

    model_name: str
    provider: str
    profile_name: str
    token_usage: TokenUsage
    cost: float


def calculate_cost(token_usage: TokenUsage, pricing: ModelPricing) -> float:
    """Calculate cost based on token usage and model pricing.

    Args:
        token_usage: Token usage statistics
        pricing: Model pricing per 1M tokens

    Returns:
        Cost in USD
    """
    input_cost = (token_usage.input_tokens / 1_000_000) * pricing.input_per_million
    output_cost = (token_usage.output_tokens / 1_000_000) * pricing.output_per_million
    return input_cost + output_cost


def validate_directory_input(func: Callable[..., Any]) -> Callable[..., Any]:
    """Decorator to validate directory argument.

    Args:
        func: Function to decorate

    Returns:
        Decorated function that validates directory input
    """

    @functools.wraps(func)
    def wrapper(directory: Path, *args: Any, **kwargs: Any) -> Any:
        """Wrapper function to validate directory input.

        Args:
            directory: Path to directory to validate
            *args: Additional positional arguments
            **kwargs: Additional keyword arguments

        Returns:
            Result of the wrapped function

        Raises:
            FileNotFoundError: If the directory does not exist
            NotADirectoryError: If the path is not a directory
            ValueError: If the directory is empty
        """
        if not directory.exists():
            raise FileNotFoundError(f"Directory not found: {directory}")
        if not directory.is_dir():
            raise NotADirectoryError(f"Not a directory: {directory}")
        if not any(directory.iterdir()):
            raise ValueError(f"Directory is empty: {directory}")
        return func(directory, *args, **kwargs)

    return wrapper


def get_available_models() -> list[BenchmarkModelConfig]:
    """Get list of available models for benchmarking.

    Returns:
        List of configured benchmark models
    """
    return BENCHMARK_MODELS


@validate_directory_input
def load_benchmark_profiles(benchmark_dir: Path) -> list[dict[str, Any]]:
    """Load benchmark profiles.

    Args:
        benchmark_dir: Directory containing benchmark YAML files

    Returns:
        List of dicts with 'name' and 'path' keys
    """
    profiles = []
    for yaml_file in sorted(benchmark_dir.glob("*.yaml")):
        profiles.append({"name": yaml_file.stem, "path": yaml_file})
    return profiles


def create_knowledge_base_paths(workspace_root: Path) -> ResourcePaths:
    """Build resource path configuration from workspace root.

    Args:
        workspace_root: Path to workspace root directory

    Returns:
        ResourcePaths configuration object
    """
    return ResourcePaths(
        persona=workspace_root / "prompts/persona/default.md",
        instruction_assessment=workspace_root / "prompts/instruction/assessment.md",
        instruction_conversation=workspace_root / "prompts/instruction/conversation.md",
        output_format_assessment=workspace_root
        / "configs/output_format/assessment.yaml",
        output_format_conversation=workspace_root
        / "configs/output_format/conversation.yaml",
        cancer_modules_dir=workspace_root / "configs/knowledge_base/cancer_modules",
        dx_protocols_dir=workspace_root / "configs/knowledge_base/dx_protocols",
    )


def validate_backend(provider: str, model_name: str) -> None:
    """Validate that backend is accessible.

    Args:
        provider: Provider key (e.g. "openai", "google", "local")
        model_name: Model identifier

    Raises:
        ValueError: If the backend is not accessible
    """
    if provider == "openai":
        if not os.getenv("OPENAI_API_KEY"):
            raise ValueError("OPENAI_API_KEY not set")
    elif provider == "google":
        if not os.getenv("GOOGLE_API_KEY"):
            raise ValueError("GOOGLE_API_KEY not set")
    elif provider == "local":
        ollama_base_url = os.getenv("OLLAMA_BASE_URL", "http://localhost:11434")
        response = requests.get(f"{ollama_base_url}/api/tags", timeout=2)
        if response.status_code != 200:
            raise ValueError("Ollama server not responding")
        models = response.json().get("models", [])
        model_names = [m.get("name") for m in models]
        if model_name not in model_names:
            raise ValueError(f"Model not found. Run: ollama pull {model_name}")


def run_assessment(
    model_config: BenchmarkModelConfig, profile_path: Path
) -> BenchmarkResult:
    """Run a single assessment and capture token usage.

    Args:
        model_config: Model configuration with pricing
        profile_path: Path to profile YAML file

    Returns:
        BenchmarkResult with cost and token usage
    """
    validate_backend(model_config.provider, model_config.model_name)

    workspace_root = Path(__file__).parent.parent

    with open(workspace_root / "configs/config.yaml") as f:
        default_config = yaml.safe_load(f)

    app_config = AppConfig(
        model=ModelConfig(
            provider=model_config.provider,
            model_name=model_config.model_name,
        ),
        knowledge_base_paths=create_knowledge_base_paths(workspace_root),
        selected_cancer_modules=default_config["knowledge_base"]["cancer_modules"],
        selected_dx_protocols=default_config["knowledge_base"]["dx_protocols"],
    )

    factory = SentinelFactory(app_config)
    conversation = factory.create_conversation_manager()
    user = load_user_file(str(profile_path))

    with get_openai_callback() as cb:
        conversation.initial_assessment(user)
        input_tokens = cb.prompt_tokens
        output_tokens = cb.completion_tokens

    token_usage = TokenUsage(input_tokens, output_tokens)
    cost = calculate_cost(token_usage, model_config.pricing)

    return BenchmarkResult(
        model_name=model_config.model_name,
        provider=model_config.provider,
        profile_name=profile_path.stem,
        token_usage=token_usage,
        cost=cost,
    )


def print_results(results: list[BenchmarkResult]) -> None:
    """Print formatted results to console.

    Args:
        results: List of benchmark results
    """
    by_model = defaultdict(list)
    for result in results:
        by_model[result.model_name].append(result)

    lines = []
    lines.append("\n╔══════════════════════════════════════════════════════════════╗")
    lines.append("β•‘              LLM Cost Benchmark Results                      β•‘")
    lines.append("β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•\n")

    for model_name, model_results in sorted(by_model.items()):
        provider = model_results[0].provider
        lines.append(f"Model: {model_name} ({provider})")

        num_results = len(model_results)
        avg_cost = sum(result.cost for result in model_results) / num_results
        avg_input = (
            sum(result.token_usage.input_tokens for result in model_results)
            / num_results
        )
        avg_output = (
            sum(result.token_usage.output_tokens for result in model_results)
            / num_results
        )

        for result_index, result in enumerate(model_results):
            is_last = result_index == num_results - 1
            prefix = "└─" if is_last else "β”œβ”€"
            indent = "   " if is_last else "β”‚  "
            lines.append(f"{prefix} Profile: {result.profile_name}")
            lines.append(f"{indent}β”œβ”€ Input:  {result.token_usage.input_tokens:,}")
            lines.append(f"{indent}β”œβ”€ Output: {result.token_usage.output_tokens:,}")
            lines.append(f"{indent}└─ Cost: ${result.cost:.4f}")

        lines.append(f"└─ Average: ${avg_cost:.4f}")
        lines.append(
            f"   └─ Tokens: {avg_input:,.0f} input, {avg_output:,.0f} output\n"
        )

    lines.append("═══════════════════════════════════════════════════════════════")
    lines.append("Summary - Model Ranking (Cheapest to Most Expensive)")
    lines.append("───────────────────────────────────────────────────────────────")

    model_averages = sorted(
        (
            (
                model_name,
                sum(result.cost for result in model_results) / len(model_results),
            )
            for model_name, model_results in by_model.items()
        ),
        key=lambda model_avg_tuple: model_avg_tuple[1],
    )

    for rank, (model_name, avg_cost) in enumerate(model_averages, 1):
        prefix = (
            "πŸ₯‡"
            if rank == 1
            else "πŸ₯ˆ"
            if rank == 2
            else "πŸ₯‰"
            if rank == 3
            else f"{rank}."
        )
        lines.append(f"{prefix:<4} {model_name:<25} ${avg_cost:.4f}")

    lines.append(f"\nTotal: {len(results)} assessments across {len(by_model)} models")
    lines.append("═══════════════════════════════════════════════════════════════\n")

    logger.info("\n".join(lines))


def export_to_csv(results: list[BenchmarkResult], output_path: Path) -> None:
    """Export results to CSV file.

    Args:
        results: List of benchmark results
        output_path: Path to output CSV file
    """
    with open(output_path, "w", newline="") as f:
        writer = csv.writer(f)
        writer.writerow(
            [
                "model_name",
                "provider",
                "profile_name",
                "input_tokens",
                "output_tokens",
                "total_tokens",
                "cost_usd",
            ]
        )
        for result in results:
            writer.writerow(
                [
                    result.model_name,
                    result.provider,
                    result.profile_name,
                    result.token_usage.input_tokens,
                    result.token_usage.output_tokens,
                    result.token_usage.total_tokens,
                    f"{result.cost:.6f}",
                ]
            )
    logger.success(f"Results exported to: {output_path}")


def export_to_pdf(
    results: list[BenchmarkResult],
    output_path: Path,
) -> None:
    """Export results to PDF file with formatted table.

    Args:
        results: List of benchmark results
        output_path: Path to output PDF file
    """
    doc = SimpleDocTemplate(
        str(output_path),
        pagesize=letter,
        leftMargin=0.75 * inch,
        rightMargin=0.75 * inch,
        topMargin=0.75 * inch,
        bottomMargin=0.75 * inch,
    )

    elements = []
    styles = getSampleStyleSheet()

    title = Paragraph(
        "<b>LLM Cost Benchmark Report</b>",
        styles["Title"],
    )
    elements.append(title)
    elements.append(Spacer(1, 0.2 * inch))

    timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    timestamp_text = Paragraph(
        f"Generated: {timestamp}",
        styles["Normal"],
    )
    elements.append(timestamp_text)
    elements.append(Spacer(1, 0.3 * inch))

    by_model = defaultdict(list)
    for result in results:
        by_model[result.model_name].append(result)

    pricing_lookup = {model.model_name: model.pricing for model in BENCHMARK_MODELS}

    results_desc = Paragraph(
        "Average cost of running a single cancer risk assessment given a completed patient questionnaire.",
        styles["Normal"],
    )
    elements.append(results_desc)
    elements.append(Spacer(1, 0.2 * inch))

    table_data = [
        [
            "Model",
            "Provider",
            "Avg Cost\nper Report",
            "Input Price\n(per 1M)",
            "Output Price\n(per 1M)",
            "Avg Input\nTokens",
            "Avg Output\nTokens",
        ]
    ]

    # Sort by average cost (cheapest first)
    sorted_models = sorted(
        by_model.items(),
        key=lambda model_tuple: sum(result.cost for result in model_tuple[1])
        / len(model_tuple[1]),
    )

    for model_name, model_results in sorted_models:
        provider = model_results[0].provider
        num_results = len(model_results)
        avg_cost = sum(result.cost for result in model_results) / num_results
        avg_input = (
            sum(result.token_usage.input_tokens for result in model_results)
            / num_results
        )
        avg_output = (
            sum(result.token_usage.output_tokens for result in model_results)
            / num_results
        )

        pricing = pricing_lookup.get(model_name)
        input_price = f"${pricing.input_per_million:.2f}" if pricing else "N/A"
        output_price = f"${pricing.output_per_million:.2f}" if pricing else "N/A"

        table_data.append(
            [
                model_name,
                provider,
                f"${avg_cost:.4f}",
                input_price,
                output_price,
                f"{avg_input:,.0f}",
                f"{avg_output:,.0f}",
            ]
        )

    table = Table(
        table_data,
        colWidths=[
            1.6 * inch,
            0.9 * inch,
            1.0 * inch,
            1.0 * inch,
            1.0 * inch,
            0.9 * inch,
            0.9 * inch,
        ],
    )

    table_style = TableStyle(
        [
            # Header styling
            ("BACKGROUND", (0, 0), (-1, 0), colors.HexColor("#4A90E2")),
            ("TEXTCOLOR", (0, 0), (-1, 0), colors.whitesmoke),
            ("ALIGN", (0, 0), (-1, 0), "CENTER"),
            ("VALIGN", (0, 0), (-1, 0), "MIDDLE"),
            ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"),
            ("FONTSIZE", (0, 0), (-1, 0), 9),
            ("BOTTOMPADDING", (0, 0), (-1, 0), 12),
            ("TOPPADDING", (0, 0), (-1, 0), 12),
            # Data rows styling
            ("BACKGROUND", (0, 1), (-1, -1), colors.beige),
            ("TEXTCOLOR", (0, 1), (-1, -1), colors.black),
            ("ALIGN", (0, 1), (1, -1), "LEFT"),
            ("ALIGN", (2, 1), (-1, -1), "CENTER"),
            ("VALIGN", (0, 1), (-1, -1), "MIDDLE"),
            ("FONTNAME", (0, 1), (-1, -1), "Helvetica"),
            ("FONTSIZE", (0, 1), (-1, -1), 9),
            ("TOPPADDING", (0, 1), (-1, -1), 8),
            ("BOTTOMPADDING", (0, 1), (-1, -1), 8),
            # Alternating row colors
            ("ROWBACKGROUNDS", (0, 1), (-1, -1), [colors.beige, colors.lightgrey]),
            # Grid
            ("GRID", (0, 0), (-1, -1), 1, colors.black),
        ]
    )

    table.setStyle(table_style)
    elements.append(table)
    elements.append(Spacer(1, 0.3 * inch))

    doc.build(elements)
    logger.success(f"PDF report generated: {output_path}")


def parse_args() -> argparse.Namespace:
    """Parse command-line arguments.

    Returns:
        Parsed command-line arguments
    """
    workspace_root = Path(__file__).parent.parent

    parser = argparse.ArgumentParser(description="Benchmark LLM costs")
    parser.add_argument(
        "--benchmark-dir",
        type=Path,
        default=workspace_root / "examples/benchmark",
        help="Benchmark profile directory",
    )
    parser.add_argument(
        "--models",
        nargs="+",
        help="Specific models to test (by name)",
    )
    parser.add_argument(
        "--profiles",
        nargs="+",
        help="Specific profiles to test",
    )
    parser.add_argument(
        "--output",
        type=Path,
        help="Export to CSV",
    )
    return parser.parse_args()


def main() -> None:
    """Main entry point.

    Raises:
        ValueError: If no matching models or profiles found
    """
    args = parse_args()

    logger.info("Loading benchmark configuration...")
    all_models = get_available_models()

    logger.info("Loading profiles...")
    all_profiles = load_benchmark_profiles(args.benchmark_dir)

    if args.models:
        all_models = [model for model in all_models if model.model_name in args.models]
        if not all_models:
            raise ValueError(f"No matching models: {args.models}")

    if args.profiles:
        all_profiles = [
            profile for profile in all_profiles if profile["name"] in args.profiles
        ]
        if not all_profiles:
            raise ValueError(f"No matching profiles: {args.profiles}")

    logger.info(
        f"\nRunning {len(all_models)} model(s) x {len(all_profiles)} profile(s)...\n"
    )

    results = []
    for model_index, model in enumerate(all_models, 1):
        for profile in all_profiles:
            logger.info(
                f"[{model_index}/{len(all_models)}] {model.model_name}: {profile['name']}"
            )
            result = run_assessment(model, profile["path"])
            results.append(result)

    print_results(results)

    # Generate PDF report with timestamp
    workspace_root = Path(__file__).parent.parent
    outputs_dir = workspace_root / "outputs"
    outputs_dir.mkdir(exist_ok=True)

    timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    pdf_path = outputs_dir / f"llm_benchmark_{timestamp}.pdf"

    export_to_pdf(results, pdf_path)

    if args.output:
        export_to_csv(results, args.output)


if __name__ == "__main__":
    main()