Spaces:
Running
on
Zero
Running
on
Zero
| name: dipo | |
| version: denoiser | |
| data: | |
| name: dm_dipo | |
| json_root: data_path | |
| root: data_path # root directory of the dataset | |
| batch_size: 20 # batch size for training | |
| num_workers: 8 # number of workers for data loading | |
| K: 32 # maximum number of nodes (parts) in the graph (object) | |
| split_file: split_file_path | |
| n_views_per_model: 20 | |
| frame_mode: last_frame | |
| test_which: pm | |
| mode_num: 5 | |
| system: | |
| name: sys_origin | |
| exp_dir: ./exps/${name}/${version} | |
| data_root: ${data.root} | |
| n_time_samples: 16 | |
| loss_fg_weight: 0.01 | |
| img_drop_prob: 0.1 # image dropout probability, for classifier free training | |
| guidance_scaler: 0.5 # scaling factor for guidance on the image during inference | |
| graph_drop_prob: 0.5 # graph dropout probability, for classifier free training | |
| model: | |
| name: denoiser | |
| in_ch: 6 | |
| attn_dim: 128 | |
| n_head: 4 | |
| n_layers: 6 | |
| dropout: 0.1 | |
| K: ${data.K} | |
| mode_num: 5 | |
| img_emb_dims: [768, 128] | |
| cat_drop_prob: 0.5 # object category dropout probability, for classifier free training | |
| scheduler: # scheduler for the diffusion model | |
| name: ddpm | |
| config: | |
| num_train_timesteps: 1000 | |
| beta_schedule: linear | |
| prediction_type: epsilon | |
| lr_scheduler_adapter: # lr scheduler for the new modules on top of the base model | |
| name: LinearWarmupCosineAnnealingLR | |
| warmup_epochs: 3 | |
| max_epochs: ${trainer.max_epochs} | |
| warmup_start_lr: 1e-6 | |
| eta_min: 1e-5 | |
| optimizer_adapter: # optimizer for the new modules on top of the base model | |
| name: AdamW | |
| args: | |
| lr: 5e-4 | |
| betas: [0.9, 0.99] | |
| eps: 1.e-15 | |
| lr_scheduler_cage: # lr scheduler for modules in the base model | |
| name: LinearWarmupCosineAnnealingLR | |
| warmup_epochs: 3 | |
| max_epochs: ${trainer.max_epochs} | |
| warmup_start_lr: 1e-6 | |
| eta_min: 1e-5 | |
| optimizer_cage: # optimizer for modules in the base model | |
| name: AdamW | |
| args: | |
| lr: 5e-5 | |
| betas: [0.9, 0.99] | |
| eps: 1.e-15 | |
| checkpoint: | |
| dirpath: ${system.exp_dir}/ckpts | |
| save_top_k: -1 | |
| every_n_epochs: 50 | |
| logger: # wandb logger | |
| save_dir: ${system.exp_dir}/logs # directory to save logs | |
| name: ${name}_${version} | |
| project: SINGAPO | |
| trainer: | |
| max_epochs: 200 | |
| log_every_n_steps: 100 | |
| limit_train_batches: 1.0 | |
| limit_val_batches: 1.0 | |
| check_val_every_n_epoch: 10 | |
| precision: 16-mixed | |
| profiler: simple | |
| num_sanity_val_steps: -1 | |