Spaces:
Sleeping
Sleeping
Add app and requirements
Browse files- app.py +53 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 4 |
+
|
| 5 |
+
device = "cpu"
|
| 6 |
+
torch_dtype = torch.float32
|
| 7 |
+
|
| 8 |
+
fine_tuned_model_id = "leduckhai/MultiMed-ST"
|
| 9 |
+
fine_tuned_subfolder = "asr/whisper-small-english/checkpoint"
|
| 10 |
+
|
| 11 |
+
print("Loading model on CPU... this may take a moment.")
|
| 12 |
+
|
| 13 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 14 |
+
fine_tuned_model_id,
|
| 15 |
+
subfolder=fine_tuned_subfolder,
|
| 16 |
+
torch_dtype=torch_dtype,
|
| 17 |
+
low_cpu_mem_usage=True,
|
| 18 |
+
use_safetensors=True
|
| 19 |
+
).to(device)
|
| 20 |
+
|
| 21 |
+
processor = AutoProcessor.from_pretrained("openai/whisper-small")
|
| 22 |
+
|
| 23 |
+
asr_pipeline = pipeline(
|
| 24 |
+
"automatic-speech-recognition",
|
| 25 |
+
model=model,
|
| 26 |
+
tokenizer=processor.tokenizer,
|
| 27 |
+
feature_extractor=processor.feature_extractor,
|
| 28 |
+
max_new_tokens=128,
|
| 29 |
+
chunk_length_s=30,
|
| 30 |
+
batch_size=16,
|
| 31 |
+
return_timestamps=True,
|
| 32 |
+
torch_dtype=torch_dtype,
|
| 33 |
+
device=device
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def transcribe_audio(audio_path):
|
| 37 |
+
if audio_path is None:
|
| 38 |
+
return "No audio found."
|
| 39 |
+
|
| 40 |
+
print(f"Transcribing: {audio_path}")
|
| 41 |
+
result = asr_pipeline(audio_path, generate_kwargs={"language": "en", "task": "transcribe"})
|
| 42 |
+
return result['text']
|
| 43 |
+
|
| 44 |
+
demo = gr.Interface(
|
| 45 |
+
fn=transcribe_audio,
|
| 46 |
+
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
|
| 47 |
+
outputs="text",
|
| 48 |
+
title="Medical Whisper ASR (CPU Mode)",
|
| 49 |
+
description="Running on CPU. Processing might take a few seconds."
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
if __name__ == "__main__":
|
| 53 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
accelerate
|
| 4 |
+
librosa
|
| 5 |
+
scipy
|