Spaces:
Running
Running
Commit
·
422ddbf
1
Parent(s):
2fd58b0
Review list tuples dic
Browse filesScript with examples of tuple lists and dictionaries
- Review_list_tuples_dic.ipynb +303 -0
Review_list_tuples_dic.ipynb
ADDED
|
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"cadena = \"El/DT gato/N come/V pescado/N de/P la/DT nevera/N y/C de/P la/DT lata/N y/C baila/V el/DT la/N la/N la/N ./Fp\""
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "markdown",
|
| 14 |
+
"metadata": {},
|
| 15 |
+
"source": [
|
| 16 |
+
"1) Obtener un diccionario, que para cada categoría, muestre su frecuencia. Ordenar el resultado alfabéticamente por categoría."
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "code",
|
| 21 |
+
"execution_count": 2,
|
| 22 |
+
"metadata": {},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"cadenaS = cadena.split(' ')"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": 3,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [
|
| 33 |
+
{
|
| 34 |
+
"name": "stdout",
|
| 35 |
+
"output_type": "stream",
|
| 36 |
+
"text": [
|
| 37 |
+
"C 2\n",
|
| 38 |
+
"DT 4\n",
|
| 39 |
+
"Fp 1\n",
|
| 40 |
+
"N 7\n",
|
| 41 |
+
"P 2\n",
|
| 42 |
+
"V 2\n"
|
| 43 |
+
]
|
| 44 |
+
}
|
| 45 |
+
],
|
| 46 |
+
"source": [
|
| 47 |
+
"diccionario = {}\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"for i in cadenaS:\n",
|
| 50 |
+
" separacion = i.split(\"/\")\n",
|
| 51 |
+
" try:\n",
|
| 52 |
+
" diccionario[separacion[1]] = diccionario[separacion[1]] + 1\n",
|
| 53 |
+
" except:\n",
|
| 54 |
+
" diccionario[separacion[1]] = 1\n",
|
| 55 |
+
" \n",
|
| 56 |
+
" \n",
|
| 57 |
+
"#1 primer punto.\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"for s in sorted(diccionario):\n",
|
| 60 |
+
" print(s,diccionario[s])"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "markdown",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"source": [
|
| 67 |
+
"Generemos un diccionario para cada palabra de \"cadena\", mostremos la frecuencia y una lista de sus categorías morfosintácticas con su frecuencia. Imprimimos el resultado ordenado alfabeticamente."
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "markdown",
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"source": [
|
| 74 |
+
"diccionario = {}\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"for i in cadenaS:\n",
|
| 77 |
+
" separacion = i.split(\"/\")\n",
|
| 78 |
+
" separacion[0] = separacion[0].lower()\n",
|
| 79 |
+
"\n",
|
| 80 |
+
" if separacion[0] not in diccionario:\n",
|
| 81 |
+
" diccionario[separacion[0]] = {}\n",
|
| 82 |
+
"\n",
|
| 83 |
+
" if separacion[1] in diccionario[separacion[0]]:\n",
|
| 84 |
+
" diccionario[separacion[0]][separacion[1]] += 1 \n",
|
| 85 |
+
" else:\n",
|
| 86 |
+
" diccionario[separacion[0]][separacion[1]] = 1 \n",
|
| 87 |
+
"\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"for s in sorted(diccionario.keys()):\n",
|
| 90 |
+
" tmp = 0\n",
|
| 91 |
+
" salida = \"\"\n",
|
| 92 |
+
" for j in diccionario[s].keys():\n",
|
| 93 |
+
" tmp += diccionario[s][j]\n",
|
| 94 |
+
" salida += \" \"+j+\" \"+str(diccionario[s][j])\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"\n",
|
| 97 |
+
" print(s,tmp,salida)"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
{
|
| 101 |
+
"cell_type": "markdown",
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"source": [
|
| 104 |
+
"Calculamos la frecuencia de todos los bigramas de la cadena, teniendo en cuenta un símbolo inicial `<S>` y un simbolo final `</S>` para la cadena.\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"```\n",
|
| 107 |
+
"('DT', 'N') 4\n",
|
| 108 |
+
" ('N', 'V') 1\n",
|
| 109 |
+
" ('N', 'C') 2\n",
|
| 110 |
+
" ('N', 'Fp') 1\n",
|
| 111 |
+
" ('N', 'N') 2\n",
|
| 112 |
+
" ('C', 'V') 1\n",
|
| 113 |
+
" ('V', 'N') 1\n",
|
| 114 |
+
" ('V', 'DT') 1\n",
|
| 115 |
+
" ('P', 'DT') 2\n",
|
| 116 |
+
" ('Fp', '</S>') 1\n",
|
| 117 |
+
" ('<S>', 'DT') 1\n",
|
| 118 |
+
" ('C', 'P') 1\n",
|
| 119 |
+
" ('N', 'P') 1\n",
|
| 120 |
+
"```"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": 4,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [
|
| 128 |
+
{
|
| 129 |
+
"name": "stdout",
|
| 130 |
+
"output_type": "stream",
|
| 131 |
+
"text": [
|
| 132 |
+
"('<S>', 'DT') 1\n",
|
| 133 |
+
"('DT', 'N') 4\n",
|
| 134 |
+
"('N', 'V') 1\n",
|
| 135 |
+
"('V', 'N') 1\n",
|
| 136 |
+
"('N', 'P') 1\n",
|
| 137 |
+
"('P', 'DT') 2\n",
|
| 138 |
+
"('N', 'C') 2\n",
|
| 139 |
+
"('C', 'P') 1\n",
|
| 140 |
+
"('C', 'V') 1\n",
|
| 141 |
+
"('V', 'DT') 1\n",
|
| 142 |
+
"('N', 'N') 2\n",
|
| 143 |
+
"('N', 'Fp') 1\n",
|
| 144 |
+
"('Fp', '</S>') 1\n"
|
| 145 |
+
]
|
| 146 |
+
}
|
| 147 |
+
],
|
| 148 |
+
"source": [
|
| 149 |
+
"diccionario = {}\n",
|
| 150 |
+
"bigramas = []\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"#cosa = [\"<S>\"] + [ (cadenaS[0].split(\"/\")[1],cadenaS[i+1].split(\"/\")[1]) if (i+1) < len(cadenaS) else [] for i in range(len(cadenaS)) ] + [\"</S>\"] \n",
|
| 153 |
+
"cosa = [\"<S>\"] + [ i.split(\"/\")[1] for i in cadenaS ] + [\"</S>\"] \n",
|
| 154 |
+
"\n",
|
| 155 |
+
"#\"El/DT perro/N come/V carne/N de/P la/DT carnicería/N y/C de/P la/DT nevera/N y/C canta/V el/DT la/N la/N la/N ./Fp\"\n",
|
| 156 |
+
"#print(cosa)\n",
|
| 157 |
+
"\n",
|
| 158 |
+
"l = len(cosa)\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"for i in range(l):\n",
|
| 161 |
+
" if (i+1) < l:\n",
|
| 162 |
+
" bigramas += [(cosa[i],cosa[i+1])]\n",
|
| 163 |
+
" else:\n",
|
| 164 |
+
" break\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"for i in bigramas:\n",
|
| 168 |
+
" if i not in diccionario:\n",
|
| 169 |
+
" diccionario[i] = 1\n",
|
| 170 |
+
" else:\n",
|
| 171 |
+
" diccionario[i] += 1\n",
|
| 172 |
+
"\n",
|
| 173 |
+
"for i in diccionario.keys():\n",
|
| 174 |
+
" print(i,diccionario[i])"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"cell_type": "markdown",
|
| 179 |
+
"metadata": {},
|
| 180 |
+
"source": [
|
| 181 |
+
"Ahora construimos una función que devuelva las probabilidades léxicas P(C|w) y de emisión P(w|C) para una palabra dada (w) para todas sus categorías (C) que aparecen en el diccionario construido anteriormente. Si la palabra no existe en el diccionario debe decir que la palabra es desconocida.\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"```\n",
|
| 184 |
+
"Por ejemplo, para la palabra w=”la”, debería devolver:\n",
|
| 185 |
+
" P( DT | la )= 0.400000\n",
|
| 186 |
+
" P( N | la )= 0.600000\n",
|
| 187 |
+
" P( la | DT )= 0.500000\n",
|
| 188 |
+
" P( la | N )= 0.428571\n",
|
| 189 |
+
"```"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"execution_count": 5,
|
| 195 |
+
"metadata": {},
|
| 196 |
+
"outputs": [],
|
| 197 |
+
"source": [
|
| 198 |
+
"def lex(w,cased=True):\n",
|
| 199 |
+
" diccionario = {}\n",
|
| 200 |
+
"\n",
|
| 201 |
+
" #iteracion = 0\n",
|
| 202 |
+
" for i in cadenaS:\n",
|
| 203 |
+
" separacion = i.split('/')\n",
|
| 204 |
+
" if cased == False:\n",
|
| 205 |
+
" w = w.lower()\n",
|
| 206 |
+
" separacion[0] = separacion[0].lower()\n",
|
| 207 |
+
" \n",
|
| 208 |
+
" if separacion[1] not in diccionario:\n",
|
| 209 |
+
" diccionario[separacion[1]] = {\"cantidad\" : 1}\n",
|
| 210 |
+
" if separacion[0] not in diccionario[separacion[1]] and separacion[0] == w:\n",
|
| 211 |
+
" diccionario[separacion[1]][separacion[0]] = 1\n",
|
| 212 |
+
" elif separacion[0] == w:\n",
|
| 213 |
+
" diccionario[separacion[1]][separacion[0]] += 1\n",
|
| 214 |
+
" else:\n",
|
| 215 |
+
" diccionario[separacion[1]][\"cantidad\"] += 1\n",
|
| 216 |
+
" if w not in diccionario[separacion[1]] and separacion[0] == w:\n",
|
| 217 |
+
" diccionario[separacion[1]][separacion[0]] = 1\n",
|
| 218 |
+
" elif separacion[0] == w:\n",
|
| 219 |
+
" diccionario[separacion[1]][separacion[0]] += 1\n",
|
| 220 |
+
" \n",
|
| 221 |
+
" if w not in diccionario and w == separacion[0]:\n",
|
| 222 |
+
" diccionario[w] = {\"cantidad\":1}\n",
|
| 223 |
+
" if separacion[1] not in diccionario[w]:\n",
|
| 224 |
+
" diccionario[w][separacion[1]] = 1\n",
|
| 225 |
+
" else:\n",
|
| 226 |
+
" diccionario[w][separacion[1]] += 1\n",
|
| 227 |
+
" elif w == separacion[0]:\n",
|
| 228 |
+
" diccionario[w][\"cantidad\"] += 1\n",
|
| 229 |
+
" if separacion[1] not in diccionario[w]:\n",
|
| 230 |
+
" diccionario[w][separacion[1]] = 1\n",
|
| 231 |
+
" else:\n",
|
| 232 |
+
" diccionario[w][separacion[1]] += 1\n",
|
| 233 |
+
"\n",
|
| 234 |
+
" \n",
|
| 235 |
+
" #print(iteracion,diccionario)\n",
|
| 236 |
+
" #iteracion += 1\n",
|
| 237 |
+
" \n",
|
| 238 |
+
" for i in diccionario.keys():\n",
|
| 239 |
+
" if w in diccionario[i]:\n",
|
| 240 |
+
" probWC = diccionario[i][w]/diccionario[i][\"cantidad\"]\n",
|
| 241 |
+
" print(\"P(\", w, \"|\", i, \") = \", probWC) # P( la | N )= 0.428571\n",
|
| 242 |
+
"\n",
|
| 243 |
+
" if i == w:\n",
|
| 244 |
+
" for categoria in diccionario[w]:\n",
|
| 245 |
+
" probCW = diccionario[w][categoria] / diccionario[w][\"cantidad\"]\n",
|
| 246 |
+
" if categoria != \"cantidad\":\n",
|
| 247 |
+
" print(\"P(\", categoria, \"|\", w, \") = \", probCW) #P( DT | la )= 0.400000"
|
| 248 |
+
]
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"cell_type": "code",
|
| 252 |
+
"execution_count": 6,
|
| 253 |
+
"metadata": {},
|
| 254 |
+
"outputs": [
|
| 255 |
+
{
|
| 256 |
+
"name": "stdout",
|
| 257 |
+
"output_type": "stream",
|
| 258 |
+
"text": [
|
| 259 |
+
"P( la | DT ) = 0.5\n",
|
| 260 |
+
"P( la | N ) = 0.42857142857142855\n",
|
| 261 |
+
"P( DT | la ) = 0.4\n",
|
| 262 |
+
"P( N | la ) = 0.6\n"
|
| 263 |
+
]
|
| 264 |
+
}
|
| 265 |
+
],
|
| 266 |
+
"source": [
|
| 267 |
+
"lex(\"la\",True)"
|
| 268 |
+
]
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"cell_type": "code",
|
| 272 |
+
"execution_count": null,
|
| 273 |
+
"metadata": {},
|
| 274 |
+
"outputs": [],
|
| 275 |
+
"source": []
|
| 276 |
+
}
|
| 277 |
+
],
|
| 278 |
+
"metadata": {
|
| 279 |
+
"interpreter": {
|
| 280 |
+
"hash": "6e5e0e4de587a08ae1fd499d48602c29fc81255ce67beabc6badfa0dc31fba78"
|
| 281 |
+
},
|
| 282 |
+
"kernelspec": {
|
| 283 |
+
"display_name": "Python 3.6.13 ('myenv')",
|
| 284 |
+
"language": "python",
|
| 285 |
+
"name": "python3"
|
| 286 |
+
},
|
| 287 |
+
"language_info": {
|
| 288 |
+
"codemirror_mode": {
|
| 289 |
+
"name": "ipython",
|
| 290 |
+
"version": 3
|
| 291 |
+
},
|
| 292 |
+
"file_extension": ".py",
|
| 293 |
+
"mimetype": "text/x-python",
|
| 294 |
+
"name": "python",
|
| 295 |
+
"nbconvert_exporter": "python",
|
| 296 |
+
"pygments_lexer": "ipython3",
|
| 297 |
+
"version": "3.6.13"
|
| 298 |
+
},
|
| 299 |
+
"orig_nbformat": 4
|
| 300 |
+
},
|
| 301 |
+
"nbformat": 4,
|
| 302 |
+
"nbformat_minor": 2
|
| 303 |
+
}
|