Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import inspect | |
| import warnings | |
| import numpy as np | |
| from typing import List, Optional, Union | |
| import requests | |
| from io import BytesIO | |
| from PIL import Image | |
| import torch | |
| from torch import autocast | |
| from tqdm.auto import tqdm | |
| from diffusers import StableDiffusionImg2ImgPipeline | |
| from huggingface_hub import notebook_login | |
| notebook_login() | |
| device = "cuda" | |
| model_path = "CompVis/stable-diffusion-v1-4" | |
| access_token = "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" | |
| pipe = StableDiffusionImg2ImgPipeline.from_pretrained( | |
| model_path, | |
| revision="fp16", | |
| torch_dtype=torch.float16, | |
| use_auth_token=access_token | |
| ) | |
| pipe = pipe.to(device) | |
| def predict(img, strength, seed, prompt): | |
| seed = int(seed) | |
| img1 = np.asarray(img) | |
| img2 = Image.fromarray(img1) | |
| init_image = img2.resize((768, 512)) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| with autocast("cuda"): | |
| image = pipe(prompt=prompt, init_image=init_image, strength=strength, guidance_scale=5, generator=generator).images[0] | |
| return image | |
| gr.Interface( | |
| predict, | |
| title = 'Image to Image using Diffusers', | |
| inputs=[ | |
| gr.Image(), | |
| gr.Slider(0, 1, value=0.05, label ="strength (keep it close to 0 to make minimal changes to image (such as 0.1, 0.2, 0.3)"), | |
| gr.Number(label = "seed (any number, generally 1024. But it's totally random. Change it and see different outputs)"), | |
| gr.Textbox(label="Prompt, empty by default") | |
| ], | |
| outputs = [ | |
| gr.Image() | |
| ] | |
| ).launch() |