DKT / app.py
shaocong's picture
update html
29aae9c
raw
history blame
13 kB
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.pipeline import DKTPipeline, ModelConfig
import cv2
import copy
import trimesh
from os.path import join
from tools.depth2pcd import depth2pcd
# from moge.model.v2 import MoGeModel
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces
import time
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''
height = 480
width = 832
window_size = 21
DKT_PIPELINE = DKTPipeline()
example_inputs = [
["examples/1.mp4", "1.3B", 5, 3],
["examples/33.mp4", "1.3B", 5, 3],
["examples/7.mp4", "1.3B", 5, 3],
["examples/8.mp4", "1.3B", 5, 3],
["examples/9.mp4", "1.3B", 5, 3],
# ["examples/178db6e89ab682bfc612a3290fec58dd.mp4", "1.3B", 5, 3],
["examples/36.mp4", "1.3B", 5, 3],
["examples/39.mp4", "1.3B", 5, 3],
# ["examples/b1f1fa44f414d7731cd7d77751093c44.mp4", "1.3B", 5, 3],
["examples/10.mp4", "1.3B", 5, 3],
["examples/30.mp4", "1.3B", 5, 3],
["examples/3.mp4", "1.3B", 5, 3],
["examples/32.mp4", "1.3B", 5, 3],
["examples/35.mp4", "1.3B", 5, 3],
["examples/40.mp4", "1.3B", 5, 3],
["examples/2.mp4", "1.3B", 5, 3],
# ["examples/31.mp4", "1.3B", 5, 3],
# ["examples/DJI_20250912164311_0007_D.mp4", "1.3B", 5, 3],
# ["examples/DJI_20250912163642_0003_D.mp4", "1.3B", 5, 3],
# ["examples/5.mp4", "1.3B", 5, 3],
# ["examples/1b0daeb776471c7389b36cee53049417.mp4", "1.3B", 5, 3],
# ["examples/8a6dfb8cfe80634f4f77ae9aa830d075.mp4", "1.3B", 5, 3],
# ["examples/69230f105ad8740e08d743a8ee11c651.mp4", "1.3B", 5, 3],
# ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
]
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
pts_rgb = frame[valid_mask]
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=pts_3d, colors=pts_rgb
)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
try:
if len(points) == 0:
logger.warning(f"No valid points to create GLB for {glb_filename}")
return False
if colors is not None:
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
pts_rgb = colors
else:
logger.info("No colors provided, adding default white colors")
pts_rgb = np.ones((len(points), 3))
valid_mask = np.ones(len(points), dtype=bool)
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
scene_3d.export(glb_filename)
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
return True
except Exception as e:
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
return False
def process_video(
video_file,
model_size,
num_inference_steps,
overlap
):
global height
global width
global window_size
global DKT_PIPELINE
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
start_time = time.time()
prediction_result = DKT_PIPELINE(
video_file,
prompt=PROMPT,
negative_prompt=NEGATIVE_PROMPT,
height=height,
width=width,
num_inference_steps=num_inference_steps,
overlap=overlap,
return_rgb=True
)
end_time = time.time()
spend_time = end_time - start_time
logger.info(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")
print(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")
frame_length = len(prediction_result['rgb_frames'])
vis_pc_num = 4
indices = np.linspace(0, frame_length-1, vis_pc_num)
indices = np.round(indices).astype(np.int32)
pc_start_time = time.time()
pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
pc_end_time = time.time()
pc_spend_time = pc_end_time - pc_start_time
logger.info(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")
print(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")
glb_files = []
for idx, pcd in enumerate(pcds):
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
logger.info(f'points:{points.shape}, colors: {colors.shape}')
print(f'points:{points.shape}, colors: {colors.shape}')
points[:, 2] = -points[:, 2]
points[:, 0] = -points[:, 0]
glb_filename = os.path.join(cur_save_dir, f'{timestamp}_{idx:02d}.glb')
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
if not success:
logger.warning(f"Failed to save GLB file: {glb_filename}")
print(f"Failed to save GLB file: {glb_filename}")
glb_files.append(glb_filename)
#* save depth predictions video
output_filename = f"output_{timestamp}.mp4"
output_path = os.path.join(cur_save_dir, output_filename)
cap = cv2.VideoCapture(video_file)
input_fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
save_video(prediction_result['colored_depth_map'], output_path, fps=input_fps, quality=8)
return output_path, glb_files
#* gradio creation and initialization
css = """
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
"""
head_html = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
"""
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
# gr.Markdown(title, elem_classes=["title"])
gr.Markdown(
"""
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
<p align="center">
<a title="Website" href="https://daniellli.github.io/projects/DKT/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/xshocng1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
"""
)
# gr.Markdown(description, elem_classes=["description"])
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
model_size = gr.Radio(
# choices=["1.3B", "14B"],
choices=["1.3B"],
value="1.3B",
label="Model Size"
)
with gr.Accordion("Advanced Parameters", open=False):
num_inference_steps = gr.Slider(
minimum=1, maximum=50, value=5, step=1,
label="Number of Inference Steps"
)
overlap = gr.Slider(
minimum=1, maximum=20, value=3, step=1,
label="Overlap"
)
submit = gr.Button(value="Compute Depth", variant="primary")
with gr.Column():
output_video = gr.Video(
label="Depth Outputs",
elem_id='video-display-output',
autoplay=True
)
vis_video = gr.Video(
label="Visualization Video",
visible=False,
autoplay=True
)
with gr.Row():
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map0 = gr.Model3D(
label="Point Cloud Key Frame 1",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False,
)
with gr.Column(scale=1):
output_point_map1 = gr.Model3D(
label="Point Cloud Key Frame 2",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map2 = gr.Model3D(
label="Point Cloud Key Frame 3",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Column(scale=1):
output_point_map3 = gr.Model3D(
label="Point Cloud Key Frame 4",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
def on_submit(video_file, model_size, num_inference_steps, overlap):
logger.info('on_submit is calling')
if video_file is None:
return None, None, None, None, None, None, "Please upload a video file"
try:
start_time = time.time()
output_path, glb_files = process_video(
video_file, model_size, num_inference_steps, overlap
)
spend_time = time.time() - start_time
logger.info(f"Total spend time in on_submit: {spend_time:.2f} seconds")
print(f"Total spend time in on_submit: {spend_time:.2f} seconds")
if output_path is None:
return None, None, None, None, None, None, glb_files
model3d_outputs = [None] * 4
if glb_files:
for i, glb_file in enumerate(glb_files[:4]):
if os.path.exists(glb_file):
model3d_outputs[i] = glb_file
return output_path, None, *model3d_outputs
except Exception as e:
logger.error(e)
return None, None, None, None, None, None
submit.click(
on_submit,
inputs=[
input_video, model_size, num_inference_steps, overlap
],
outputs=[
output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
]
)
logger.info(f'there are {len(example_inputs)} demo files')
print(f'there are {len(example_inputs)} demo files')
examples = gr.Examples(
examples=example_inputs,
inputs=[input_video, model_size, num_inference_steps, overlap],
outputs=[
output_video, vis_video,
output_point_map0, output_point_map1, output_point_map2, output_point_map3
],
fn=on_submit,
examples_per_page=12,
cache_examples=False
)
if __name__ == '__main__':
#* main code, model and moge model initialization
demo.queue().launch(share = True)