Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,997 Bytes
cf7f9c0 d041699 caa1927 cf7f9c0 d041699 cf7f9c0 a959b08 cf7f9c0 d041699 cf7f9c0 32520ec cf7f9c0 d041699 cf7f9c0 d041699 675d3e2 42437d6 45a142d 42437d6 d4b8273 45a142d 98ca41e 8adf7c4 d4b8273 8adf7c4 d4b8273 45a142d 42437d6 98ca41e 45a142d 42437d6 45a142d d4b8273 45a142d 42437d6 98ca41e d4b8273 45a142d cf7f9c0 d041699 cf7f9c0 d041699 03adfb4 cf7f9c0 d041699 cf7f9c0 660d02c 32520ec 5313d97 32520ec 5313d97 d041699 cf7f9c0 d041699 5313d97 d041699 5313d97 32520ec d041699 cf7f9c0 d041699 9c38505 cf7f9c0 d041699 cf7f9c0 d041699 32520ec 81d4d32 d041699 81d4d32 d041699 81d4d32 d041699 81d4d32 d041699 cf7f9c0 d823b65 5329c31 d823b65 14b6368 d823b65 675d3e2 d823b65 14b6368 d823b65 3470d29 d823b65 cf7f9c0 d823b65 f5052b1 d823b65 cf7f9c0 d823b65 837628c d823b65 a959b08 d823b65 a959b08 d823b65 837628c d823b65 837628c d823b65 a959b08 d823b65 a959b08 d823b65 cf7f9c0 d823b65 aa54deb d823b65 32520ec 5313d97 d823b65 660d02c d823b65 5313d97 32520ec cf7f9c0 d823b65 cf7f9c0 d823b65 cf7f9c0 d823b65 cf7f9c0 d823b65 cf7f9c0 d823b65 6985ac5 d823b65 675d3e2 d823b65 675d3e2 cf7f9c0 675d3e2 d4b8273 264ed10 675d3e2 cf7f9c0 d823b65 cf7f9c0 d041699 cac3afa d041699 cf7f9c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
import gradio as gr
import numpy as np
import torch
from PIL import Image
from loguru import logger
from tqdm import tqdm
from tools.common_utils import save_video
from dkt.pipelines.pipeline import DKTPipeline, ModelConfig
import cv2
import copy
import trimesh
from os.path import join
from tools.depth2pcd import depth2pcd
# from moge.model.v2 import MoGeModel
from tools.eval_utils import transfer_pred_disp2depth, colorize_depth_map
import glob
import datetime
import shutil
import tempfile
import spaces
import time
#* better for bg: logs/outs/train/remote/sft-T2SQNet_glassverse_cleargrasp_HISS_DREDS_DREDS_glassverse_interiorverse-4gpus-origin-lora128-1.3B-rgb_depth-w832-h480-Wan2.1-Fun-Control-2025-10-28-23:26:41/epoch-0-20000.safetensors
PROMPT = 'depth'
NEGATIVE_PROMPT = ''
height = 480
width = 832
window_size = 21
DKT_PIPELINE = DKTPipeline()
example_inputs = [
["examples/1.mp4", "1.3B", 5, 3],
["examples/33.mp4", "1.3B", 5, 3],
["examples/7.mp4", "1.3B", 5, 3],
["examples/8.mp4", "1.3B", 5, 3],
["examples/9.mp4", "1.3B", 5, 3],
# ["examples/178db6e89ab682bfc612a3290fec58dd.mp4", "1.3B", 5, 3],
["examples/36.mp4", "1.3B", 5, 3],
["examples/39.mp4", "1.3B", 5, 3],
# ["examples/b1f1fa44f414d7731cd7d77751093c44.mp4", "1.3B", 5, 3],
["examples/10.mp4", "1.3B", 5, 3],
["examples/30.mp4", "1.3B", 5, 3],
["examples/3.mp4", "1.3B", 5, 3],
["examples/32.mp4", "1.3B", 5, 3],
["examples/35.mp4", "1.3B", 5, 3],
["examples/40.mp4", "1.3B", 5, 3],
["examples/2.mp4", "1.3B", 5, 3],
# ["examples/31.mp4", "1.3B", 5, 3],
# ["examples/DJI_20250912164311_0007_D.mp4", "1.3B", 5, 3],
# ["examples/DJI_20250912163642_0003_D.mp4", "1.3B", 5, 3],
# ["examples/5.mp4", "1.3B", 5, 3],
# ["examples/1b0daeb776471c7389b36cee53049417.mp4", "1.3B", 5, 3],
# ["examples/8a6dfb8cfe80634f4f77ae9aa830d075.mp4", "1.3B", 5, 3],
# ["examples/69230f105ad8740e08d743a8ee11c651.mp4", "1.3B", 5, 3],
# ["examples/b68045aa2128ab63d9c7518f8d62eafe.mp4", "1.3B", 5, 3],
]
def pmap_to_glb(point_map, valid_mask, frame) -> trimesh.Scene:
pts_3d = point_map[valid_mask] * np.array([-1, -1, 1])
pts_rgb = frame[valid_mask]
# Initialize a 3D scene
scene_3d = trimesh.Scene()
# Add point cloud data to the scene
point_cloud_data = trimesh.PointCloud(
vertices=pts_3d, colors=pts_rgb
)
scene_3d.add_geometry(point_cloud_data)
return scene_3d
def create_simple_glb_from_pointcloud(points, colors, glb_filename):
try:
if len(points) == 0:
logger.warning(f"No valid points to create GLB for {glb_filename}")
return False
if colors is not None:
# logger.info(f"Adding colors to GLB: shape={colors.shape}, range=[{colors.min():.3f}, {colors.max():.3f}]")
pts_rgb = colors
else:
logger.info("No colors provided, adding default white colors")
pts_rgb = np.ones((len(points), 3))
valid_mask = np.ones(len(points), dtype=bool)
scene_3d = pmap_to_glb(points, valid_mask, pts_rgb)
scene_3d.export(glb_filename)
# logger.info(f"Saved GLB file using trimesh: {glb_filename}")
return True
except Exception as e:
logger.error(f"Error creating GLB from pointcloud using trimesh: {str(e)}")
return False
def process_video(
video_file,
model_size,
num_inference_steps,
overlap
):
global height
global width
global window_size
global DKT_PIPELINE
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
cur_save_dir = tempfile.mkdtemp(prefix=f'dkt_{timestamp}_{model_size}_')
start_time = time.time()
prediction_result = DKT_PIPELINE(
video_file,
prompt=PROMPT,
negative_prompt=NEGATIVE_PROMPT,
height=height,
width=width,
num_inference_steps=num_inference_steps,
overlap=overlap,
return_rgb=True
)
end_time = time.time()
spend_time = end_time - start_time
logger.info(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")
print(f"DKT_PIPELINE spend time: {spend_time:.2f} seconds for depth prediction")
frame_length = len(prediction_result['rgb_frames'])
vis_pc_num = 4
indices = np.linspace(0, frame_length-1, vis_pc_num)
indices = np.round(indices).astype(np.int32)
pc_start_time = time.time()
pcds = DKT_PIPELINE.prediction2pc_v2(prediction_result['depth_map'], prediction_result['rgb_frames'], indices, return_pcd=True)
pc_end_time = time.time()
pc_spend_time = pc_end_time - pc_start_time
logger.info(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")
print(f"prediction2pc_v2 spend time: {pc_spend_time:.2f} seconds for point cloud extraction")
glb_files = []
for idx, pcd in enumerate(pcds):
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors) if pcd.has_colors() else None
logger.info(f'points:{points.shape}, colors: {colors.shape}')
print(f'points:{points.shape}, colors: {colors.shape}')
points[:, 2] = -points[:, 2]
points[:, 0] = -points[:, 0]
glb_filename = os.path.join(cur_save_dir, f'{timestamp}_{idx:02d}.glb')
success = create_simple_glb_from_pointcloud(points, colors, glb_filename)
if not success:
logger.warning(f"Failed to save GLB file: {glb_filename}")
print(f"Failed to save GLB file: {glb_filename}")
glb_files.append(glb_filename)
#* save depth predictions video
output_filename = f"output_{timestamp}.mp4"
output_path = os.path.join(cur_save_dir, output_filename)
cap = cv2.VideoCapture(video_file)
input_fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
save_video(prediction_result['colored_depth_map'], output_path, fps=input_fps, quality=8)
return output_path, glb_files
#* gradio creation and initialization
css = """
#download {
height: 118px;
}
.slider .inner {
width: 5px;
background: #FFF;
}
.viewport {
aspect-ratio: 4/3;
}
.tabs button.selected {
font-size: 20px !important;
color: crimson !important;
}
h1 {
text-align: center;
display: block;
}
h2 {
text-align: center;
display: block;
}
h3 {
text-align: center;
display: block;
}
.md_feedback li {
margin-bottom: 0px !important;
}
"""
head_html = """
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-1FWSVCGZTG');
</script>
"""
with gr.Blocks(css=css, title="DKT", head=head_html) as demo:
# gr.Markdown(title, elem_classes=["title"])
gr.Markdown(
"""
# Diffusion Knows Transparency: Repurposing Video Diffusion for Transparent Object Depth and Normal Estimation
<p align="center">
<a title="Website" href="https://daniellli.github.io/projects/DKT/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="Github" href="https://github.com/Daniellli/DKT" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Daniellli/DKT?style=social" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/xshocng1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
"""
)
# gr.Markdown(description, elem_classes=["description"])
# gr.Markdown("### Video Processing Demo", elem_classes=["description"])
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video", elem_id='video-display-input')
model_size = gr.Radio(
# choices=["1.3B", "14B"],
choices=["1.3B"],
value="1.3B",
label="Model Size"
)
with gr.Accordion("Advanced Parameters", open=False):
num_inference_steps = gr.Slider(
minimum=1, maximum=50, value=5, step=1,
label="Number of Inference Steps"
)
overlap = gr.Slider(
minimum=1, maximum=20, value=3, step=1,
label="Overlap"
)
submit = gr.Button(value="Compute Depth", variant="primary")
with gr.Column():
output_video = gr.Video(
label="Depth Outputs",
elem_id='video-display-output',
autoplay=True
)
vis_video = gr.Video(
label="Visualization Video",
visible=False,
autoplay=True
)
with gr.Row():
gr.Markdown("### 3D Point Cloud Visualization", elem_classes=["title"])
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map0 = gr.Model3D(
label="Point Cloud Key Frame 1",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False,
)
with gr.Column(scale=1):
output_point_map1 = gr.Model3D(
label="Point Cloud Key Frame 2",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
output_point_map2 = gr.Model3D(
label="Point Cloud Key Frame 3",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
with gr.Column(scale=1):
output_point_map3 = gr.Model3D(
label="Point Cloud Key Frame 4",
clear_color=[1.0, 1.0, 1.0, 1.0],
interactive=False
)
def on_submit(video_file, model_size, num_inference_steps, overlap):
logger.info('on_submit is calling')
if video_file is None:
return None, None, None, None, None, None, "Please upload a video file"
try:
start_time = time.time()
output_path, glb_files = process_video(
video_file, model_size, num_inference_steps, overlap
)
spend_time = time.time() - start_time
logger.info(f"Total spend time in on_submit: {spend_time:.2f} seconds")
print(f"Total spend time in on_submit: {spend_time:.2f} seconds")
if output_path is None:
return None, None, None, None, None, None, glb_files
model3d_outputs = [None] * 4
if glb_files:
for i, glb_file in enumerate(glb_files[:4]):
if os.path.exists(glb_file):
model3d_outputs[i] = glb_file
return output_path, None, *model3d_outputs
except Exception as e:
logger.error(e)
return None, None, None, None, None, None
submit.click(
on_submit,
inputs=[
input_video, model_size, num_inference_steps, overlap
],
outputs=[
output_video, vis_video, output_point_map0, output_point_map1, output_point_map2, output_point_map3
]
)
logger.info(f'there are {len(example_inputs)} demo files')
print(f'there are {len(example_inputs)} demo files')
examples = gr.Examples(
examples=example_inputs,
inputs=[input_video, model_size, num_inference_steps, overlap],
outputs=[
output_video, vis_video,
output_point_map0, output_point_map1, output_point_map2, output_point_map3
],
fn=on_submit,
examples_per_page=12,
cache_examples=False
)
if __name__ == '__main__':
#* main code, model and moge model initialization
demo.queue().launch(share = True)
|