Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --- RAG / Semantic Search imports ---
|
| 2 |
+
import numpy as np
|
| 3 |
+
import traceback
|
| 4 |
+
import torch
|
| 5 |
+
from langchain_text_splitters import MarkdownHeaderTextSplitter, RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
+
from openai import OpenAI
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
# --- Initialize OpenAI Gemini client ---
|
| 11 |
+
client = OpenAI(
|
| 12 |
+
api_key="AIzaSyCnImdGunjyiEW7CS_N-xRP5VGAe1MIIgg",
|
| 13 |
+
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# --- Functions for RAG ---
|
| 17 |
+
def md_to_kb_safe(md_text, embedding_model_name="sentence-transformers/all-MiniLM-L6-v2"):
|
| 18 |
+
try:
|
| 19 |
+
headers_to_split_on = [("#", "Header 1"), ("##", "Header 2"), ("###", "Header 3")]
|
| 20 |
+
splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
|
| 21 |
+
md_chunks = splitter.split_text(md_text)
|
| 22 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200, length_function=len)
|
| 23 |
+
final_chunks = text_splitter.split_documents(md_chunks)
|
| 24 |
+
texts = [doc.page_content for doc in final_chunks]
|
| 25 |
+
device = "cuda" if torch.cuda.is_available() and torch.cuda.memory_allocated() < 2_000_000_000 else "cpu"
|
| 26 |
+
embedding_model = HuggingFaceEmbeddings(model_name=embedding_model_name, model_kwargs={"device": device})
|
| 27 |
+
vectors = embedding_model.embed_documents(texts)
|
| 28 |
+
kb = [{"text": texts[i], "vector": vectors[i]} for i in range(len(texts))]
|
| 29 |
+
return {"success": True, "num_chunks": len(final_chunks), "kb": kb, "embed_model": embedding_model}
|
| 30 |
+
except Exception as e:
|
| 31 |
+
return {"success": False, "error": str(e), "traceback": traceback.format_exc()}
|
| 32 |
+
|
| 33 |
+
def cosine_similarity(v1, v2):
|
| 34 |
+
return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2))
|
| 35 |
+
|
| 36 |
+
def semantic_search(query, embed_model, kb, top_k=3):
|
| 37 |
+
t0 = time.time()
|
| 38 |
+
q_vec = np.array(embed_model.embed_query(query))
|
| 39 |
+
scores = [(cosine_similarity(q_vec, item["vector"]), item["text"]) for item in kb]
|
| 40 |
+
scores.sort(reverse=True, key=lambda x: x[0])
|
| 41 |
+
return scores[:top_k], time.time() - t0
|
| 42 |
+
|
| 43 |
+
def build_context(results):
|
| 44 |
+
ctx = ""
|
| 45 |
+
for i, (score, chunk) in enumerate(results):
|
| 46 |
+
ctx += f"=== Context {i+1} ===\n{chunk}\n\n"
|
| 47 |
+
return ctx
|
| 48 |
+
|
| 49 |
+
def rag_answer(query, embed_model, kb):
|
| 50 |
+
t0 = time.time()
|
| 51 |
+
results, t_semantic = semantic_search(query, embed_model, kb, top_k=3)
|
| 52 |
+
context = build_context(results)
|
| 53 |
+
prompt = f"""Use ONLY the information in the following context.
|
| 54 |
+
|
| 55 |
+
{context}
|
| 56 |
+
|
| 57 |
+
Question: {query}
|
| 58 |
+
|
| 59 |
+
If the answer is not in the context, respond EXACTLY with:
|
| 60 |
+
"I do not have enough information to answer that."
|
| 61 |
+
"""
|
| 62 |
+
response = client.chat.completions.create(
|
| 63 |
+
model="gemini-2.5-pro",
|
| 64 |
+
temperature=0,
|
| 65 |
+
messages=[
|
| 66 |
+
{"role": "system", "content": "Answer strictly using the context."},
|
| 67 |
+
{"role": "user", "content": prompt}
|
| 68 |
+
]
|
| 69 |
+
)
|
| 70 |
+
answer = response.choices[0].message.content
|
| 71 |
+
return answer, t_semantic, time.time() - t0
|
| 72 |
+
|
| 73 |
+
def evaluate_ai(response, true_answer):
|
| 74 |
+
t0 = time.time()
|
| 75 |
+
eval_prompt = f"""
|
| 76 |
+
AI Response: {response}
|
| 77 |
+
Ground Truth: {true_answer}
|
| 78 |
+
|
| 79 |
+
Rules:
|
| 80 |
+
- 1 = very close to true answer
|
| 81 |
+
- 0.5 = partially correct
|
| 82 |
+
- 0 = incorrect
|
| 83 |
+
"""
|
| 84 |
+
response = client.chat.completions.create(
|
| 85 |
+
model="gemini-2.5-pro",
|
| 86 |
+
temperature=0,
|
| 87 |
+
messages=[
|
| 88 |
+
{"role": "system", "content": "You are an evaluation system."},
|
| 89 |
+
{"role": "user", "content": eval_prompt}
|
| 90 |
+
]
|
| 91 |
+
)
|
| 92 |
+
return response.choices[0].message.content, time.time() - t0
|
| 93 |
+
|
| 94 |
+
def run_rag_pipeline(md_text_input, query, true_answer):
|
| 95 |
+
kb_result = md_to_kb_safe(md_text_input)
|
| 96 |
+
if not kb_result["success"]:
|
| 97 |
+
return f"Error creating KB:\n{kb_result['error']}", None, None
|
| 98 |
+
kb = kb_result["kb"]
|
| 99 |
+
embed_model = kb_result["embed_model"]
|
| 100 |
+
answer, t_semantic, t_rag = rag_answer(query, embed_model, kb)
|
| 101 |
+
score, t_eval = evaluate_ai(answer, true_answer)
|
| 102 |
+
timings = f"Semantic Search: {t_semantic:.2f}s | LLM Answer: {t_rag:.2f}s | Evaluation: {t_eval:.2f}s"
|
| 103 |
+
return answer, score, timings
|
| 104 |
+
import base64
|
| 105 |
+
import os
|
| 106 |
+
import re
|
| 107 |
+
import time
|
| 108 |
+
import zipfile
|
| 109 |
+
from pathlib import Path
|
| 110 |
+
|
| 111 |
+
import click
|
| 112 |
+
import gradio as gr
|
| 113 |
+
from gradio_pdf import PDF
|
| 114 |
+
from loguru import logger
|
| 115 |
+
|
| 116 |
+
from mineru.cli.common import prepare_env, read_fn, aio_do_parse, pdf_suffixes, image_suffixes
|
| 117 |
+
from mineru.utils.cli_parser import arg_parse
|
| 118 |
+
from mineru.utils.hash_utils import str_sha256
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
async def parse_pdf(doc_path, output_dir, end_page_id, is_ocr, formula_enable, table_enable, language, backend, url):
|
| 122 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
file_name = f'{safe_stem(Path(doc_path).stem)}_{time.strftime("%y%m%d_%H%M%S")}'
|
| 126 |
+
pdf_data = read_fn(doc_path)
|
| 127 |
+
if is_ocr:
|
| 128 |
+
parse_method = 'ocr'
|
| 129 |
+
else:
|
| 130 |
+
parse_method = 'auto'
|
| 131 |
+
|
| 132 |
+
if backend.startswith("vlm"):
|
| 133 |
+
parse_method = "vlm"
|
| 134 |
+
|
| 135 |
+
local_image_dir, local_md_dir = prepare_env(output_dir, file_name, parse_method)
|
| 136 |
+
await aio_do_parse(
|
| 137 |
+
output_dir=output_dir,
|
| 138 |
+
pdf_file_names=[file_name],
|
| 139 |
+
pdf_bytes_list=[pdf_data],
|
| 140 |
+
p_lang_list=[language],
|
| 141 |
+
parse_method=parse_method,
|
| 142 |
+
end_page_id=end_page_id,
|
| 143 |
+
formula_enable=formula_enable,
|
| 144 |
+
table_enable=table_enable,
|
| 145 |
+
backend=backend,
|
| 146 |
+
server_url=url,
|
| 147 |
+
)
|
| 148 |
+
return local_md_dir, file_name
|
| 149 |
+
except Exception as e:
|
| 150 |
+
logger.exception(e)
|
| 151 |
+
return None
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def compress_directory_to_zip(directory_path, output_zip_path):
|
| 155 |
+
"""压缩指定目录到一个 ZIP 文件。
|
| 156 |
+
|
| 157 |
+
:param directory_path: 要压缩的目录路径
|
| 158 |
+
:param output_zip_path: 输出的 ZIP 文件路径
|
| 159 |
+
"""
|
| 160 |
+
try:
|
| 161 |
+
with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
| 162 |
+
|
| 163 |
+
# 遍历目录中的所有文件和子目录
|
| 164 |
+
for root, dirs, files in os.walk(directory_path):
|
| 165 |
+
for file in files:
|
| 166 |
+
# 构建完整的文件路径
|
| 167 |
+
file_path = os.path.join(root, file)
|
| 168 |
+
# 计算相对路径
|
| 169 |
+
arcname = os.path.relpath(file_path, directory_path)
|
| 170 |
+
# 添加文件到 ZIP 文件
|
| 171 |
+
zipf.write(file_path, arcname)
|
| 172 |
+
return 0
|
| 173 |
+
except Exception as e:
|
| 174 |
+
logger.exception(e)
|
| 175 |
+
return -1
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def image_to_base64(image_path):
|
| 179 |
+
with open(image_path, 'rb') as image_file:
|
| 180 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def replace_image_with_base64(markdown_text, image_dir_path):
|
| 184 |
+
# 匹配Markdown中的图片标签
|
| 185 |
+
pattern = r'\!\[(?:[^\]]*)\]\(([^)]+)\)'
|
| 186 |
+
|
| 187 |
+
# 替换图片链接
|
| 188 |
+
def replace(match):
|
| 189 |
+
relative_path = match.group(1)
|
| 190 |
+
full_path = os.path.join(image_dir_path, relative_path)
|
| 191 |
+
base64_image = image_to_base64(full_path)
|
| 192 |
+
return f''
|
| 193 |
+
|
| 194 |
+
# 应用替换
|
| 195 |
+
return re.sub(pattern, replace, markdown_text)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
async def to_markdown(file_path, end_pages=10, is_ocr=False, formula_enable=True, table_enable=True, language="ch", backend="pipeline", url=None):
|
| 199 |
+
file_path = to_pdf(file_path)
|
| 200 |
+
# 获取识别的md文件以及压缩包文件路径
|
| 201 |
+
local_md_dir, file_name = await parse_pdf(file_path, './output', end_pages - 1, is_ocr, formula_enable, table_enable, language, backend, url)
|
| 202 |
+
archive_zip_path = os.path.join('./output', str_sha256(local_md_dir) + '.zip')
|
| 203 |
+
zip_archive_success = compress_directory_to_zip(local_md_dir, archive_zip_path)
|
| 204 |
+
if zip_archive_success == 0:
|
| 205 |
+
logger.info('Compression successful')
|
| 206 |
+
else:
|
| 207 |
+
logger.error('Compression failed')
|
| 208 |
+
md_path = os.path.join(local_md_dir, file_name + '.md')
|
| 209 |
+
with open(md_path, 'r', encoding='utf-8') as f:
|
| 210 |
+
txt_content = f.read()
|
| 211 |
+
md_content = replace_image_with_base64(txt_content, local_md_dir)
|
| 212 |
+
# 返回转换后的PDF路径
|
| 213 |
+
new_pdf_path = os.path.join(local_md_dir, file_name + '_layout.pdf')
|
| 214 |
+
|
| 215 |
+
return md_content, txt_content, archive_zip_path, new_pdf_path
|
| 216 |
+
import asyncio
|
| 217 |
+
import traceback
|
| 218 |
+
|
| 219 |
+
async def to_markdown_safe(file_path, end_pages=10, is_ocr=False,
|
| 220 |
+
formula_enable=True, table_enable=True,
|
| 221 |
+
language="ch", backend="pipeline", url=None):
|
| 222 |
+
try:
|
| 223 |
+
return await to_markdown(file_path, end_pages, is_ocr,
|
| 224 |
+
formula_enable, table_enable,
|
| 225 |
+
language, backend, url)
|
| 226 |
+
except Exception as e:
|
| 227 |
+
err_msg = traceback.format_exc()
|
| 228 |
+
logger.error(f"Error in to_markdown: {err_msg}")
|
| 229 |
+
# trả về giá trị mặc định để Gradio không crash
|
| 230 |
+
return f"Error: {str(e)}", err_msg, None, None
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
latex_delimiters_type_a = [
|
| 234 |
+
{'left': '$$', 'right': '$$', 'display': True},
|
| 235 |
+
{'left': '$', 'right': '$', 'display': False},
|
| 236 |
+
]
|
| 237 |
+
latex_delimiters_type_b = [
|
| 238 |
+
{'left': '\\(', 'right': '\\)', 'display': False},
|
| 239 |
+
{'left': '\\[', 'right': '\\]', 'display': True},
|
| 240 |
+
]
|
| 241 |
+
latex_delimiters_type_all = latex_delimiters_type_a + latex_delimiters_type_b
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
header = """
|
| 245 |
+
<html><head><link rel="stylesheet"href="https://use.fontawesome.com/releases/v5.15.4/css/all.css"><style>.link-block{border:1px solid transparent;border-radius:24px;background-color:rgba(54,54,54,1);cursor:pointer!important}.link-block:hover{background-color:rgba(54,54,54,0.75)!important;cursor:pointer!important}.external-link{display:inline-flex;align-items:center;height:36px;line-height:36px;padding:0 16px;cursor:pointer!important}.external-link,.external-link:hover{cursor:pointer!important}a{text-decoration:none}</style></head><body><div style="
|
| 246 |
+
display: flex;
|
| 247 |
+
flex-direction: column;
|
| 248 |
+
justify-content: center;
|
| 249 |
+
align-items: center;
|
| 250 |
+
text-align: center;
|
| 251 |
+
background: linear-gradient(45deg, #007bff 0%, #0056b3 100%);
|
| 252 |
+
padding: 24px;
|
| 253 |
+
gap: 24px;
|
| 254 |
+
border-radius: 8px;
|
| 255 |
+
"><div style="
|
| 256 |
+
display: flex;
|
| 257 |
+
flex-direction: column;
|
| 258 |
+
align-items: center;
|
| 259 |
+
gap: 16px;
|
| 260 |
+
"><div style="display: flex; flex-direction: column; gap: 8px"><h1 style="
|
| 261 |
+
font-size: 48px;
|
| 262 |
+
color: #fafafa;
|
| 263 |
+
margin: 0;
|
| 264 |
+
font-family: 'Trebuchet MS', 'Lucida Sans Unicode',
|
| 265 |
+
'Lucida Grande', 'Lucida Sans', Arial, sans-serif;
|
| 266 |
+
">MinerU 2.5:PDF Extraction Demo</h1></div></div><p style="
|
| 267 |
+
margin: 0;
|
| 268 |
+
line-height: 1.6rem;
|
| 269 |
+
font-size: 16px;
|
| 270 |
+
color: #fafafa;
|
| 271 |
+
opacity: 0.8;
|
| 272 |
+
">A one-stop,open-source,high-quality data extraction tool that supports converting PDF to Markdown and JSON.<br></p><style>.link-block{display:inline-block}.link-block+.link-block{margin-left:20px}</style><div class="column has-text-centered"><div class="publication-links"><!--Code Link.--><span class="link-block"><a href="https://github.com/opendatalab/MinerU"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 4px"><i class="fab fa-github"style="color: white; margin-right: 4px"></i></span><span style="color: white">Code</span></a></span><!--Code Link.--><span class="link-block"><a href="https://huggingface.co/opendatalab/MinerU2.5-2509-1.2B"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 4px"><i class="fas fa-archive"style="color: white; margin-right: 4px"></i></span><span style="color: white">Model</span></a></span><!--arXiv Link.--><span class="link-block"><a href="https://arxiv.org/abs/2409.18839"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 8px"><i class="fas fa-file"style="color: white"></i></span><span style="color: white">Paper</span></a></span><!--Homepage Link.--><span class="link-block"><a href="https://mineru.net/home?source=online"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 8px"><i class="fas fa-home"style="color: white"></i></span><span style="color: white">Homepage</span></a></span><!--Client Link.--><span class="link-block"><a href="https://mineru.net/client?source=online"class="external-link button is-normal is-rounded is-dark"style="text-decoration: none; cursor: pointer"><span class="icon"style="margin-right: 8px"><i class="fas fa-download"style="color: white"></i></span><span style="color: white">Download</span></a></span></div></div><!--New Demo Links--></div></body></html>
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
latin_lang = [
|
| 277 |
+
'af', 'az', 'bs', 'cs', 'cy', 'da', 'de', 'es', 'et', 'fr', 'ga', 'hr', # noqa: E126
|
| 278 |
+
'hu', 'id', 'is', 'it', 'ku', 'la', 'lt', 'lv', 'mi', 'ms', 'mt', 'nl',
|
| 279 |
+
'no', 'oc', 'pi', 'pl', 'pt', 'ro', 'rs_latin', 'sk', 'sl', 'sq', 'sv',
|
| 280 |
+
'sw', 'tl', 'tr', 'uz', 'vi', 'french', 'german'
|
| 281 |
+
]
|
| 282 |
+
arabic_lang = ['ar', 'fa', 'ug', 'ur']
|
| 283 |
+
cyrillic_lang = [
|
| 284 |
+
'rs_cyrillic', 'bg', 'mn', 'abq', 'ady', 'kbd', 'ava', # noqa: E126
|
| 285 |
+
'dar', 'inh', 'che', 'lbe', 'lez', 'tab'
|
| 286 |
+
]
|
| 287 |
+
east_slavic_lang = ["ru", "be", "uk"]
|
| 288 |
+
devanagari_lang = [
|
| 289 |
+
'hi', 'mr', 'ne', 'bh', 'mai', 'ang', 'bho', 'mah', 'sck', 'new', 'gom', # noqa: E126
|
| 290 |
+
'sa', 'bgc'
|
| 291 |
+
]
|
| 292 |
+
other_lang = ['ch', 'ch_lite', 'ch_server', 'en', 'korean', 'japan', 'chinese_cht', 'ta', 'te', 'ka', "el", "th"]
|
| 293 |
+
add_lang = ['latin', 'arabic', 'east_slavic', 'cyrillic', 'devanagari']
|
| 294 |
+
|
| 295 |
+
# all_lang = ['', 'auto']
|
| 296 |
+
all_lang = []
|
| 297 |
+
# all_lang.extend([*other_lang, *latin_lang, *arabic_lang, *cyrillic_lang, *devanagari_lang])
|
| 298 |
+
all_lang.extend([*other_lang, *add_lang])
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def safe_stem(file_path):
|
| 302 |
+
stem = Path(file_path).stem
|
| 303 |
+
# 只保留字母、数字、下划线和点,其他字符替换为下划线
|
| 304 |
+
return re.sub(r'[^\w.]', '_', stem)
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def to_pdf(file_path):
|
| 308 |
+
|
| 309 |
+
if file_path is None:
|
| 310 |
+
return None
|
| 311 |
+
|
| 312 |
+
pdf_bytes = read_fn(file_path)
|
| 313 |
+
|
| 314 |
+
# unique_filename = f'{uuid.uuid4()}.pdf'
|
| 315 |
+
unique_filename = f'{safe_stem(file_path)}.pdf'
|
| 316 |
+
|
| 317 |
+
# 构建完整的文件路径
|
| 318 |
+
tmp_file_path = os.path.join(os.path.dirname(file_path), unique_filename)
|
| 319 |
+
|
| 320 |
+
# 将字节数据写入文件
|
| 321 |
+
with open(tmp_file_path, 'wb') as tmp_pdf_file:
|
| 322 |
+
tmp_pdf_file.write(pdf_bytes)
|
| 323 |
+
|
| 324 |
+
return tmp_file_path
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
# 更新界面函数
|
| 328 |
+
def update_interface(backend_choice):
|
| 329 |
+
if backend_choice in ["vlm-transformers", "vlm-vllm-async-engine"]:
|
| 330 |
+
return gr.update(visible=False), gr.update(visible=False)
|
| 331 |
+
elif backend_choice in ["vlm-http-client"]:
|
| 332 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 333 |
+
elif backend_choice in ["pipeline"]:
|
| 334 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 335 |
+
else:
|
| 336 |
+
pass
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
@click.command(context_settings=dict(ignore_unknown_options=True, allow_extra_args=True))
|
| 340 |
+
@click.pass_context
|
| 341 |
+
@click.option(
|
| 342 |
+
'--enable-example',
|
| 343 |
+
'example_enable',
|
| 344 |
+
type=bool,
|
| 345 |
+
help="Enable example files for input."
|
| 346 |
+
"The example files to be input need to be placed in the `example` folder within the directory where the command is currently executed.",
|
| 347 |
+
default=True,
|
| 348 |
+
)
|
| 349 |
+
@click.option(
|
| 350 |
+
'--enable-vllm-engine',
|
| 351 |
+
'vllm_engine_enable',
|
| 352 |
+
type=bool,
|
| 353 |
+
help="Enable vLLM engine backend for faster processing.",
|
| 354 |
+
default=False,
|
| 355 |
+
)
|
| 356 |
+
@click.option(
|
| 357 |
+
'--enable-api',
|
| 358 |
+
'api_enable',
|
| 359 |
+
type=bool,
|
| 360 |
+
help="Enable gradio API for serving the application.",
|
| 361 |
+
default=True,
|
| 362 |
+
)
|
| 363 |
+
@click.option(
|
| 364 |
+
'--max-convert-pages',
|
| 365 |
+
'max_convert_pages',
|
| 366 |
+
type=int,
|
| 367 |
+
help="Set the maximum number of pages to convert from PDF to Markdown.",
|
| 368 |
+
default=1000,
|
| 369 |
+
)
|
| 370 |
+
@click.option(
|
| 371 |
+
'--server-name',
|
| 372 |
+
'server_name',
|
| 373 |
+
type=str,
|
| 374 |
+
help="Set the server name for the Gradio app.",
|
| 375 |
+
default=None,
|
| 376 |
+
)
|
| 377 |
+
@click.option(
|
| 378 |
+
'--server-port',
|
| 379 |
+
'server_port',
|
| 380 |
+
type=int,
|
| 381 |
+
help="Set the server port for the Gradio app.",
|
| 382 |
+
default=None,
|
| 383 |
+
)
|
| 384 |
+
@click.option(
|
| 385 |
+
'--latex-delimiters-type',
|
| 386 |
+
'latex_delimiters_type',
|
| 387 |
+
type=click.Choice(['a', 'b', 'all']),
|
| 388 |
+
help="Set the type of LaTeX delimiters to use in Markdown rendering:"
|
| 389 |
+
"'a' for type '$', 'b' for type '()[]', 'all' for both types.",
|
| 390 |
+
default='all',
|
| 391 |
+
)
|
| 392 |
+
def main(ctx,
|
| 393 |
+
example_enable, vllm_engine_enable, api_enable, max_convert_pages,
|
| 394 |
+
server_name, server_port, latex_delimiters_type, **kwargs
|
| 395 |
+
):
|
| 396 |
+
|
| 397 |
+
kwargs.update(arg_parse(ctx))
|
| 398 |
+
|
| 399 |
+
if latex_delimiters_type == 'a':
|
| 400 |
+
latex_delimiters = latex_delimiters_type_a
|
| 401 |
+
elif latex_delimiters_type == 'b':
|
| 402 |
+
latex_delimiters = latex_delimiters_type_b
|
| 403 |
+
elif latex_delimiters_type == 'all':
|
| 404 |
+
latex_delimiters = latex_delimiters_type_all
|
| 405 |
+
else:
|
| 406 |
+
raise ValueError(f"Invalid latex delimiters type: {latex_delimiters_type}.")
|
| 407 |
+
|
| 408 |
+
if vllm_engine_enable:
|
| 409 |
+
try:
|
| 410 |
+
print("Start init vLLM engine...")
|
| 411 |
+
from mineru.backend.vlm.vlm_analyze import ModelSingleton
|
| 412 |
+
model_singleton = ModelSingleton()
|
| 413 |
+
predictor = model_singleton.get_model(
|
| 414 |
+
"vllm-async-engine",
|
| 415 |
+
None,
|
| 416 |
+
None,
|
| 417 |
+
**kwargs
|
| 418 |
+
)
|
| 419 |
+
print("vLLM engine init successfully.")
|
| 420 |
+
except Exception as e:
|
| 421 |
+
logger.exception(e)
|
| 422 |
+
suffixes = [f".{suffix}" for suffix in pdf_suffixes + image_suffixes]
|
| 423 |
+
with gr.Blocks() as demo:
|
| 424 |
+
gr.HTML(header)
|
| 425 |
+
with gr.Row():
|
| 426 |
+
with gr.Column(variant='panel', scale=5):
|
| 427 |
+
with gr.Row():
|
| 428 |
+
input_file = gr.File(label='Please upload a PDF or image', file_types=suffixes)
|
| 429 |
+
with gr.Row():
|
| 430 |
+
max_pages = gr.Slider(1, max_convert_pages, int(max_convert_pages/2), step=1, label='Max convert pages')
|
| 431 |
+
with gr.Row():
|
| 432 |
+
if vllm_engine_enable:
|
| 433 |
+
drop_list = ["pipeline", "vlm-vllm-async-engine"]
|
| 434 |
+
preferred_option = "vlm-vllm-async-engine"
|
| 435 |
+
else:
|
| 436 |
+
drop_list = ["pipeline", "vlm-transformers", "vlm-http-client"]
|
| 437 |
+
preferred_option = "pipeline"
|
| 438 |
+
backend = gr.Dropdown(drop_list, label="Backend", value=preferred_option)
|
| 439 |
+
with gr.Row(visible=False) as client_options:
|
| 440 |
+
url = gr.Textbox(label='Server URL', value='http://localhost:30000', placeholder='http://localhost:30000')
|
| 441 |
+
with gr.Row(equal_height=True):
|
| 442 |
+
with gr.Column():
|
| 443 |
+
gr.Markdown("**Recognition Options:**")
|
| 444 |
+
formula_enable = gr.Checkbox(label='Enable formula recognition', value=True)
|
| 445 |
+
table_enable = gr.Checkbox(label='Enable table recognition', value=True)
|
| 446 |
+
with gr.Column(visible=False) as ocr_options:
|
| 447 |
+
language = gr.Dropdown(all_lang, label='Language', value='ch')
|
| 448 |
+
is_ocr = gr.Checkbox(label='Force enable OCR', value=False)
|
| 449 |
+
with gr.Row():
|
| 450 |
+
change_bu = gr.Button('Convert')
|
| 451 |
+
clear_bu = gr.ClearButton(value='Clear')
|
| 452 |
+
pdf_show = PDF(label='PDF preview', interactive=False, visible=True, height=800)
|
| 453 |
+
if example_enable:
|
| 454 |
+
example_root = os.path.join(os.getcwd(), 'examples')
|
| 455 |
+
if os.path.exists(example_root):
|
| 456 |
+
with gr.Accordion('Examples:'):
|
| 457 |
+
gr.Examples(
|
| 458 |
+
examples=[os.path.join(example_root, _) for _ in os.listdir(example_root) if
|
| 459 |
+
_.endswith(tuple(suffixes))],
|
| 460 |
+
inputs=input_file
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
with gr.Column(variant='panel', scale=5):
|
| 464 |
+
output_file = gr.File(label='convert result', interactive=False)
|
| 465 |
+
with gr.Tabs():
|
| 466 |
+
with gr.Tab('Markdown rendering'):
|
| 467 |
+
md = gr.Markdown(label='Markdown rendering', height=1100, show_copy_button=True,
|
| 468 |
+
latex_delimiters=latex_delimiters,
|
| 469 |
+
line_breaks=True)
|
| 470 |
+
with gr.Tab('Markdown text'):
|
| 471 |
+
md_text = gr.TextArea(lines=45, show_copy_button=True)
|
| 472 |
+
with gr.Tab("RAG QA"):
|
| 473 |
+
rag_md_text = gr.TextArea(label="Paste Markdown here", lines=15)
|
| 474 |
+
rag_query = gr.Textbox(label="Your Question")
|
| 475 |
+
rag_true = gr.Textbox(label="Ground Truth Answer (optional)")
|
| 476 |
+
rag_run = gr.Button("Run RAG")
|
| 477 |
+
rag_answer_out = gr.TextArea(label="RAG Answer", lines=15, interactive=False)
|
| 478 |
+
rag_score_out = gr.Textbox(label="Evaluation Score")
|
| 479 |
+
rag_timing_out = gr.Textbox(label="Timings")
|
| 480 |
+
rag_run.click(
|
| 481 |
+
fn=run_rag_pipeline,
|
| 482 |
+
inputs=[rag_md_text, rag_query, rag_true],
|
| 483 |
+
outputs=[rag_answer_out, rag_score_out, rag_timing_out]
|
| 484 |
+
)
|
| 485 |
+
# 添加事件处理
|
| 486 |
+
backend.change(
|
| 487 |
+
fn=update_interface,
|
| 488 |
+
inputs=[backend],
|
| 489 |
+
outputs=[client_options, ocr_options],
|
| 490 |
+
api_name=False
|
| 491 |
+
)
|
| 492 |
+
# 添加demo.load事件,在页面加载时触发一次界面更新
|
| 493 |
+
demo.load(
|
| 494 |
+
fn=update_interface,
|
| 495 |
+
inputs=[backend],
|
| 496 |
+
outputs=[client_options, ocr_options],
|
| 497 |
+
api_name=False
|
| 498 |
+
)
|
| 499 |
+
clear_bu.add([input_file, md, pdf_show, md_text, output_file, is_ocr])
|
| 500 |
+
|
| 501 |
+
if api_enable:
|
| 502 |
+
api_name = None
|
| 503 |
+
else:
|
| 504 |
+
api_name = False
|
| 505 |
+
|
| 506 |
+
input_file.change(fn=to_pdf, inputs=input_file, outputs=pdf_show, api_name=api_name)
|
| 507 |
+
change_bu.click(
|
| 508 |
+
fn=lambda *args: asyncio.run(to_markdown_safe(*args)),
|
| 509 |
+
inputs=[input_file, max_pages, is_ocr, formula_enable, table_enable, language, backend, url],
|
| 510 |
+
outputs=[md, md_text, output_file, pdf_show],
|
| 511 |
+
api_name=api_name
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
demo.launch(server_name=server_name, server_port=server_port, show_api=api_enable, height=1200)
|
| 516 |
+
if __name__ == "__main__":
|
| 517 |
+
main()
|