Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,8 +5,62 @@ import numpy as np
|
|
| 5 |
from moviepy.editor import *
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
def get_frames(video_in):
|
| 12 |
frames = []
|
|
@@ -71,7 +125,7 @@ def infer(prompt,video_in, seed_in, trim_value):
|
|
| 71 |
|
| 72 |
for i in frames_list[0:int(n_frame)]:
|
| 73 |
pix2pix_img = pix2pix(prompt,5.5,1.5,i,15,"",512,512,seed_in,fn_index=0)
|
| 74 |
-
images =
|
| 75 |
result_frames.append(images[0])
|
| 76 |
print("frame " + i + ": done;")
|
| 77 |
|
|
@@ -132,10 +186,13 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 132 |
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=False, elem_id="prompt-in")
|
| 133 |
video_inp = gr.Video(label="Video source", source="upload", type="filepath", include_audio=False, elem_id="input-vid")
|
| 134 |
with gr.Row():
|
| 135 |
-
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=
|
| 136 |
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=3, step=1, value=1)
|
| 137 |
with gr.Column():
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
| 139 |
video_out = gr.Video(label="Pix2pix video result", elem_id="video-output")
|
| 140 |
submit_btn = gr.Button("Generate Pix2Pix video")
|
| 141 |
|
|
|
|
| 5 |
from moviepy.editor import *
|
| 6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
| 7 |
|
| 8 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import time
|
| 12 |
+
import psutil
|
| 13 |
+
import random
|
| 14 |
+
|
| 15 |
+
#token = os.environ.get('HF_TOKEN')
|
| 16 |
+
#pix2pix = gr.Blocks.load(name="spaces/fffiloni/instruct-pix2pix-clone", api_key=token)
|
| 17 |
+
|
| 18 |
+
pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
|
| 19 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 20 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 21 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
| 22 |
+
|
| 23 |
+
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
| 24 |
+
|
| 25 |
+
if torch.cuda.is_available():
|
| 26 |
+
pipe = pipe.to("cuda")
|
| 27 |
+
|
| 28 |
+
def pix2pix(
|
| 29 |
+
prompt,
|
| 30 |
+
text_guidance_scale,
|
| 31 |
+
image_guidance_scale,
|
| 32 |
+
image,
|
| 33 |
+
steps,
|
| 34 |
+
neg_prompt="",
|
| 35 |
+
width=512,
|
| 36 |
+
height=512,
|
| 37 |
+
seed=0,
|
| 38 |
+
):
|
| 39 |
+
print(psutil.virtual_memory()) # print memory usage
|
| 40 |
+
|
| 41 |
+
if seed == 0:
|
| 42 |
+
seed = random.randint(0, 2147483647)
|
| 43 |
+
|
| 44 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
ratio = min(height / image.height, width / image.width)
|
| 48 |
+
image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS)
|
| 49 |
+
|
| 50 |
+
result = pipe(
|
| 51 |
+
prompt,
|
| 52 |
+
negative_prompt=neg_prompt,
|
| 53 |
+
image=image,
|
| 54 |
+
num_inference_steps=int(steps),
|
| 55 |
+
image_guidance_scale=image_guidance_scale,
|
| 56 |
+
guidance_scale=text_guidance_scale,
|
| 57 |
+
generator=generator,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# return replace_nsfw_images(result)
|
| 61 |
+
return result.images, result.nsfw_content_detected, seed
|
| 62 |
+
except Exception as e:
|
| 63 |
+
return None, None, error_str(e)
|
| 64 |
|
| 65 |
def get_frames(video_in):
|
| 66 |
frames = []
|
|
|
|
| 125 |
|
| 126 |
for i in frames_list[0:int(n_frame)]:
|
| 127 |
pix2pix_img = pix2pix(prompt,5.5,1.5,i,15,"",512,512,seed_in,fn_index=0)
|
| 128 |
+
images = pix2pix_img[0]
|
| 129 |
result_frames.append(images[0])
|
| 130 |
print("frame " + i + ": done;")
|
| 131 |
|
|
|
|
| 186 |
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=False, elem_id="prompt-in")
|
| 187 |
video_inp = gr.Video(label="Video source", source="upload", type="filepath", include_audio=False, elem_id="input-vid")
|
| 188 |
with gr.Row():
|
| 189 |
+
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456)
|
| 190 |
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=3, step=1, value=1)
|
| 191 |
with gr.Column():
|
| 192 |
+
gr.HTML("""
|
| 193 |
+
<a style="display:inline-block" href="https://huggingface.co/spaces/fffiloni/Pix2Pix-Video?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
|
| 194 |
+
|
| 195 |
+
""")
|
| 196 |
video_out = gr.Video(label="Pix2pix video result", elem_id="video-output")
|
| 197 |
submit_btn = gr.Button("Generate Pix2Pix video")
|
| 198 |
|