Upload 6 files
Browse files
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
Results/A_U-Net_Autoencoder.mp4 filter=lfs diff=lfs merge=lfs -text
|
Backend/U-NET.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import io
|
| 3 |
+
from flask import Flask, request, jsonify, send_file
|
| 4 |
+
from flask_cors import CORS
|
| 5 |
+
from tensorflow.keras.models import load_model
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# Load model
|
| 9 |
+
model = load_model("unet_model.h5", compile = False)
|
| 10 |
+
|
| 11 |
+
app = Flask(__name__)
|
| 12 |
+
CORS(app) # allow frontend to fetch
|
| 13 |
+
|
| 14 |
+
# Preprocess function
|
| 15 |
+
def preprocess_image(image, target_size = (192, 176)):
|
| 16 |
+
image = image.resize((target_size[1], target_size[0])) # width, height
|
| 17 |
+
image = np.array(image) / 255.0
|
| 18 |
+
if image.ndim == 2:
|
| 19 |
+
image = np.expand_dims(image, axis = -1)
|
| 20 |
+
return np.expand_dims(image, axis = 0)
|
| 21 |
+
|
| 22 |
+
@app.route("/predict", methods=["POST"])
|
| 23 |
+
def predict():
|
| 24 |
+
if "file" not in request.files:
|
| 25 |
+
return jsonify({"error": "No file uploaded"}), 400
|
| 26 |
+
|
| 27 |
+
file = request.files["file"]
|
| 28 |
+
img = Image.open(file.stream).convert("L") # grayscale
|
| 29 |
+
|
| 30 |
+
input_data = preprocess_image(img)
|
| 31 |
+
|
| 32 |
+
pred = model.predict(input_data)[0]
|
| 33 |
+
|
| 34 |
+
if pred.ndim == 3 and pred.shape[-1] == 1:
|
| 35 |
+
pred = np.squeeze(pred, axis = -1)
|
| 36 |
+
|
| 37 |
+
pred_img = (pred * 255).astype(np.uint8)
|
| 38 |
+
pred_img = Image.fromarray(pred_img)
|
| 39 |
+
|
| 40 |
+
buf = io.BytesIO()
|
| 41 |
+
pred_img.save(buf, format="PNG")
|
| 42 |
+
buf.seek(0)
|
| 43 |
+
return send_file(buf, mimetype = "image/png")
|
| 44 |
+
|
| 45 |
+
if __name__ == "__main__":
|
| 46 |
+
app.run(host = "127.0.0.1", port = 5000, debug = True)
|
Backend/static/index.html
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>U-Net Segmentation</title>
|
| 7 |
+
<link rel="stylesheet" href="style.css">
|
| 8 |
+
</head>
|
| 9 |
+
<body>
|
| 10 |
+
|
| 11 |
+
<h1>U-Net Image Denoising</h1>
|
| 12 |
+
|
| 13 |
+
<div class="upload-area" id="uploadArea">
|
| 14 |
+
<p>Drag & Drop your image here or click to browse</p>
|
| 15 |
+
<input type="file" id="fileInput" accept="image/*" hidden>
|
| 16 |
+
</div>
|
| 17 |
+
|
| 18 |
+
<div class="preview" id="preview"></div>
|
| 19 |
+
|
| 20 |
+
<button id="runBtn">Run Image Denoising</button>
|
| 21 |
+
<div class="loader" id="loader"></div>
|
| 22 |
+
|
| 23 |
+
<div class="result" id="result"></div>
|
| 24 |
+
|
| 25 |
+
<script src="script.js"></script>
|
| 26 |
+
</body>
|
| 27 |
+
</html>
|
Backend/static/script.js
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
const uploadArea = document.getElementById("uploadArea");
|
| 2 |
+
const fileInput = document.getElementById("fileInput");
|
| 3 |
+
const preview = document.getElementById("preview");
|
| 4 |
+
const runBtn = document.getElementById("runBtn");
|
| 5 |
+
const loader = document.getElementById("loader");
|
| 6 |
+
const result = document.getElementById("result");
|
| 7 |
+
|
| 8 |
+
let uploadedFile = null;
|
| 9 |
+
|
| 10 |
+
// Open file browser on click
|
| 11 |
+
uploadArea.addEventListener("click", () => fileInput.click());
|
| 12 |
+
|
| 13 |
+
// Handle file input
|
| 14 |
+
fileInput.addEventListener("change", (e) => {
|
| 15 |
+
uploadedFile = e.target.files[0];
|
| 16 |
+
showPreview(uploadedFile);
|
| 17 |
+
});
|
| 18 |
+
|
| 19 |
+
// Drag & drop
|
| 20 |
+
uploadArea.addEventListener("dragover", (e) => {
|
| 21 |
+
e.preventDefault();
|
| 22 |
+
uploadArea.style.background = "rgba(79,195,247,0.2)";
|
| 23 |
+
});
|
| 24 |
+
|
| 25 |
+
uploadArea.addEventListener("dragleave", () => {
|
| 26 |
+
uploadArea.style.background = "rgba(255,255,255,0.05)";
|
| 27 |
+
});
|
| 28 |
+
|
| 29 |
+
uploadArea.addEventListener("drop", (e) => {
|
| 30 |
+
e.preventDefault();
|
| 31 |
+
uploadedFile = e.dataTransfer.files[0];
|
| 32 |
+
showPreview(uploadedFile);
|
| 33 |
+
});
|
| 34 |
+
|
| 35 |
+
function showPreview(file) {
|
| 36 |
+
if (!file) return;
|
| 37 |
+
const reader = new FileReader();
|
| 38 |
+
reader.onload = (e) => {
|
| 39 |
+
preview.innerHTML = `<img src="${e.target.result}" alt="Preview">`;
|
| 40 |
+
};
|
| 41 |
+
reader.readAsDataURL(file);
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
runBtn.addEventListener("click", async () => {
|
| 45 |
+
if (!uploadedFile) {
|
| 46 |
+
alert("Please upload an image first!");
|
| 47 |
+
return;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
loader.style.display = "block";
|
| 51 |
+
result.innerHTML = "";
|
| 52 |
+
|
| 53 |
+
const formData = new FormData();
|
| 54 |
+
formData.append("file", uploadedFile);
|
| 55 |
+
|
| 56 |
+
try {
|
| 57 |
+
const response = await fetch("http://127.0.0.1:5000/predict", {
|
| 58 |
+
method: "POST",
|
| 59 |
+
body: formData,
|
| 60 |
+
});
|
| 61 |
+
|
| 62 |
+
if (!response.ok) throw new Error("Failed to fetch result from backend.");
|
| 63 |
+
|
| 64 |
+
const blob = await response.blob();
|
| 65 |
+
const url = URL.createObjectURL(blob);
|
| 66 |
+
|
| 67 |
+
loader.style.display = "none";
|
| 68 |
+
result.innerHTML = `
|
| 69 |
+
<div>
|
| 70 |
+
<h3>Original</h3>
|
| 71 |
+
<img src="${URL.createObjectURL(uploadedFile)}" alt="Original">
|
| 72 |
+
</div>
|
| 73 |
+
<div>
|
| 74 |
+
<h3>Denoised Image</h3>
|
| 75 |
+
<img src="${url}" alt="Denoised Image">
|
| 76 |
+
</div>
|
| 77 |
+
`;
|
| 78 |
+
|
| 79 |
+
} catch (err) {
|
| 80 |
+
loader.style.display = "none";
|
| 81 |
+
alert(err.message);
|
| 82 |
+
}
|
| 83 |
+
});
|
Backend/static/style.css
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
body {
|
| 2 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 3 |
+
background: linear-gradient(135deg, #141e30, #243b55);
|
| 4 |
+
color: #fff;
|
| 5 |
+
text-align: center;
|
| 6 |
+
padding: 30px;
|
| 7 |
+
}
|
| 8 |
+
|
| 9 |
+
h1 {
|
| 10 |
+
font-size: 2.5rem;
|
| 11 |
+
margin-bottom: 20px;
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
.upload-area {
|
| 15 |
+
border: 2px dashed #4fc3f7;
|
| 16 |
+
border-radius: 20px;
|
| 17 |
+
padding: 40px;
|
| 18 |
+
margin: 20px auto;
|
| 19 |
+
width: 70%;
|
| 20 |
+
max-width: 600px;
|
| 21 |
+
cursor: pointer;
|
| 22 |
+
transition: 0.3s;
|
| 23 |
+
background: rgba(255, 255, 255, 0.05);
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
.upload-area:hover {
|
| 27 |
+
background: rgba(79, 195, 247, 0.1);
|
| 28 |
+
transform: scale(1.02);
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
.preview {
|
| 32 |
+
margin-top: 20px;
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
.preview img {
|
| 36 |
+
max-width: 300px;
|
| 37 |
+
border-radius: 12px;
|
| 38 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
button {
|
| 42 |
+
background: #4fc3f7;
|
| 43 |
+
border: none;
|
| 44 |
+
padding: 12px 24px;
|
| 45 |
+
margin-top: 20px;
|
| 46 |
+
border-radius: 30px;
|
| 47 |
+
color: #fff;
|
| 48 |
+
font-size: 1.1rem;
|
| 49 |
+
cursor: pointer;
|
| 50 |
+
transition: 0.3s;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
button:hover {
|
| 54 |
+
background: #039be5;
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
.result {
|
| 58 |
+
display: flex;
|
| 59 |
+
justify-content: center;
|
| 60 |
+
gap: 30px;
|
| 61 |
+
margin-top: 40px;
|
| 62 |
+
flex-wrap: wrap;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
.result img {
|
| 66 |
+
max-width: 350px;
|
| 67 |
+
border-radius: 12px;
|
| 68 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.5);
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
.loader {
|
| 72 |
+
display: none;
|
| 73 |
+
margin-top: 20px;
|
| 74 |
+
border: 6px solid #f3f3f3;
|
| 75 |
+
border-top: 6px solid #4fc3f7;
|
| 76 |
+
border-radius: 50%;
|
| 77 |
+
width: 40px;
|
| 78 |
+
height: 40px;
|
| 79 |
+
animation: spin 1s linear infinite;
|
| 80 |
+
margin-left: auto;
|
| 81 |
+
margin-right: auto;
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
@keyframes spin {
|
| 85 |
+
0% { transform: rotate(0deg); }
|
| 86 |
+
100% { transform: rotate(360deg); }
|
| 87 |
+
}
|
Notebook/A_U_Net_Based_CNN_Autoencoder_for_Preprocessing_Noisy_Images_in_Classification_Tasks.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
Results/A_U-Net_Autoencoder.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:076748cdbeb1edef5da3d59610802675e1c9f3164e3267be4cddd69408d39af4
|
| 3 |
+
size 6695182
|