Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +33 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 4 |
+
|
| 5 |
+
class ImageCaption:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 8 |
+
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 9 |
+
|
| 10 |
+
def generate(self,img):
|
| 11 |
+
if isinstance(img,str):
|
| 12 |
+
img = Image.open(img)
|
| 13 |
+
|
| 14 |
+
input = self.processor(img,return_tensors='pt')
|
| 15 |
+
print(**input)
|
| 16 |
+
output = self.model.generate(**input)
|
| 17 |
+
caption = self.processor.decode(output[0],skip_special_tokens = True)
|
| 18 |
+
return caption
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
ic = ImageCaption()
|
| 22 |
+
app = gr.Interface(
|
| 23 |
+
fn = ic.generate,
|
| 24 |
+
inputs=gr.Image(type='pil'),
|
| 25 |
+
outputs="text",
|
| 26 |
+
description="upload image to generate caption"
|
| 27 |
+
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
app.launch()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# print(ic.generate(input("Enter the source of image: ")))
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
Pillow
|