ranjan56cse commited on
Commit
dd1a656
·
verified ·
1 Parent(s): 03e82a2

Checkpoint 7 at step 7000

Browse files
checkpoint-7000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google-t5/t5-base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.0
checkpoint-7000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google-t5/t5-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v",
23
+ "q"
24
+ ],
25
+ "task_type": "SEQ_2_SEQ_LM"
26
+ }
checkpoint-7000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41b254f6486399102c137a1ad3b117f9cf6846f2fb516b30047c8753ea19c0bf
3
+ size 7098016
checkpoint-7000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f2cab60070c6fb845cc3ac903c822ec2304b3804b7793269b7c85725e702ccb
3
+ size 14277259
checkpoint-7000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a65666d9432e08c04c23bd58b378351162a63bc0d1498c612860127065e0432c
3
+ size 14645
checkpoint-7000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7367c1818003d304f49e65804b68c1ba75a91e745a4430e9ee91b353a6f63719
3
+ size 1465
checkpoint-7000/trainer_state.json ADDED
@@ -0,0 +1,917 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5003042221069336,
3
+ "best_model_checkpoint": "./t5_checkpoints_full/checkpoint-1000",
4
+ "epoch": 1.0977809142946757,
5
+ "eval_steps": 1000,
6
+ "global_step": 7000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.88e-05,
14
+ "loss": 12.5022,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 5.82e-05,
20
+ "loss": 10.3469,
21
+ "step": 100
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 8.819999999999999e-05,
26
+ "loss": 4.02,
27
+ "step": 150
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 0.0001182,
32
+ "loss": 0.9201,
33
+ "step": 200
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 0.0001482,
38
+ "loss": 0.7357,
39
+ "step": 250
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 0.00017699999999999997,
44
+ "loss": 0.6602,
45
+ "step": 300
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "learning_rate": 0.00020699999999999996,
50
+ "loss": 0.6121,
51
+ "step": 350
52
+ },
53
+ {
54
+ "epoch": 0.06,
55
+ "learning_rate": 0.000237,
56
+ "loss": 0.5817,
57
+ "step": 400
58
+ },
59
+ {
60
+ "epoch": 0.07,
61
+ "learning_rate": 0.000267,
62
+ "loss": 0.5916,
63
+ "step": 450
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 0.00029699999999999996,
68
+ "loss": 0.5675,
69
+ "step": 500
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 0.0002992913893064204,
74
+ "loss": 0.57,
75
+ "step": 550
76
+ },
77
+ {
78
+ "epoch": 0.09,
79
+ "learning_rate": 0.0002984861498818982,
80
+ "loss": 0.561,
81
+ "step": 600
82
+ },
83
+ {
84
+ "epoch": 0.1,
85
+ "learning_rate": 0.000297680910457376,
86
+ "loss": 0.5669,
87
+ "step": 650
88
+ },
89
+ {
90
+ "epoch": 0.11,
91
+ "learning_rate": 0.00029687567103285373,
92
+ "loss": 0.5659,
93
+ "step": 700
94
+ },
95
+ {
96
+ "epoch": 0.12,
97
+ "learning_rate": 0.0002960704316083315,
98
+ "loss": 0.5673,
99
+ "step": 750
100
+ },
101
+ {
102
+ "epoch": 0.13,
103
+ "learning_rate": 0.0002952651921838093,
104
+ "loss": 0.5619,
105
+ "step": 800
106
+ },
107
+ {
108
+ "epoch": 0.13,
109
+ "learning_rate": 0.00029449216233626795,
110
+ "loss": 0.5719,
111
+ "step": 850
112
+ },
113
+ {
114
+ "epoch": 0.14,
115
+ "learning_rate": 0.00029368692291174576,
116
+ "loss": 0.5576,
117
+ "step": 900
118
+ },
119
+ {
120
+ "epoch": 0.15,
121
+ "learning_rate": 0.0002928816834872235,
122
+ "loss": 0.5567,
123
+ "step": 950
124
+ },
125
+ {
126
+ "epoch": 0.16,
127
+ "learning_rate": 0.00029210865363968216,
128
+ "loss": 0.5597,
129
+ "step": 1000
130
+ },
131
+ {
132
+ "epoch": 0.16,
133
+ "eval_loss": 0.5003042221069336,
134
+ "eval_runtime": 95.3235,
135
+ "eval_samples_per_second": 118.879,
136
+ "eval_steps_per_second": 7.438,
137
+ "step": 1000
138
+ },
139
+ {
140
+ "epoch": 0.16,
141
+ "learning_rate": 0.0002913195190036504,
142
+ "loss": 0.5565,
143
+ "step": 1050
144
+ },
145
+ {
146
+ "epoch": 0.17,
147
+ "learning_rate": 0.00029057869873308994,
148
+ "loss": 0.5767,
149
+ "step": 1100
150
+ },
151
+ {
152
+ "epoch": 0.18,
153
+ "learning_rate": 0.00028978956409705817,
154
+ "loss": 0.562,
155
+ "step": 1150
156
+ },
157
+ {
158
+ "epoch": 0.19,
159
+ "learning_rate": 0.0002890004294610264,
160
+ "loss": 0.5864,
161
+ "step": 1200
162
+ },
163
+ {
164
+ "epoch": 0.2,
165
+ "learning_rate": 0.00028819519003650415,
166
+ "loss": 0.626,
167
+ "step": 1250
168
+ },
169
+ {
170
+ "epoch": 0.2,
171
+ "learning_rate": 0.0002873899506119819,
172
+ "loss": 0.7742,
173
+ "step": 1300
174
+ },
175
+ {
176
+ "epoch": 0.21,
177
+ "learning_rate": 0.0002866169207644406,
178
+ "loss": 1.1101,
179
+ "step": 1350
180
+ },
181
+ {
182
+ "epoch": 0.22,
183
+ "learning_rate": 0.00028581168133991837,
184
+ "loss": 1.3211,
185
+ "step": 1400
186
+ },
187
+ {
188
+ "epoch": 0.23,
189
+ "learning_rate": 0.0002850064419153961,
190
+ "loss": 1.413,
191
+ "step": 1450
192
+ },
193
+ {
194
+ "epoch": 0.24,
195
+ "learning_rate": 0.00028420120249087393,
196
+ "loss": 1.4265,
197
+ "step": 1500
198
+ },
199
+ {
200
+ "epoch": 0.24,
201
+ "learning_rate": 0.0002834281726433326,
202
+ "loss": 1.47,
203
+ "step": 1550
204
+ },
205
+ {
206
+ "epoch": 0.25,
207
+ "learning_rate": 0.00028262293321881034,
208
+ "loss": 1.4561,
209
+ "step": 1600
210
+ },
211
+ {
212
+ "epoch": 0.26,
213
+ "learning_rate": 0.0002818337985827786,
214
+ "loss": 1.4693,
215
+ "step": 1650
216
+ },
217
+ {
218
+ "epoch": 0.27,
219
+ "learning_rate": 0.0002810285591582563,
220
+ "loss": 1.4729,
221
+ "step": 1700
222
+ },
223
+ {
224
+ "epoch": 0.27,
225
+ "learning_rate": 0.00028022331973373413,
226
+ "loss": 1.4599,
227
+ "step": 1750
228
+ },
229
+ {
230
+ "epoch": 0.28,
231
+ "learning_rate": 0.0002794180803092119,
232
+ "loss": 1.4725,
233
+ "step": 1800
234
+ },
235
+ {
236
+ "epoch": 0.29,
237
+ "learning_rate": 0.0002786128408846897,
238
+ "loss": 1.4503,
239
+ "step": 1850
240
+ },
241
+ {
242
+ "epoch": 0.3,
243
+ "learning_rate": 0.0002778237062486579,
244
+ "loss": 1.4812,
245
+ "step": 1900
246
+ },
247
+ {
248
+ "epoch": 0.31,
249
+ "learning_rate": 0.0002770184668241357,
250
+ "loss": 1.4761,
251
+ "step": 1950
252
+ },
253
+ {
254
+ "epoch": 0.31,
255
+ "learning_rate": 0.00027621322739961344,
256
+ "loss": 1.496,
257
+ "step": 2000
258
+ },
259
+ {
260
+ "epoch": 0.31,
261
+ "eval_loss": 1.251204252243042,
262
+ "eval_runtime": 94.8348,
263
+ "eval_samples_per_second": 119.492,
264
+ "eval_steps_per_second": 7.476,
265
+ "step": 2000
266
+ },
267
+ {
268
+ "epoch": 0.32,
269
+ "learning_rate": 0.00027542409276358167,
270
+ "loss": 1.4488,
271
+ "step": 2050
272
+ },
273
+ {
274
+ "epoch": 0.33,
275
+ "learning_rate": 0.00027461885333905943,
276
+ "loss": 1.455,
277
+ "step": 2100
278
+ },
279
+ {
280
+ "epoch": 0.34,
281
+ "learning_rate": 0.00027381361391453724,
282
+ "loss": 1.4353,
283
+ "step": 2150
284
+ },
285
+ {
286
+ "epoch": 0.35,
287
+ "learning_rate": 0.000273008374490015,
288
+ "loss": 1.4524,
289
+ "step": 2200
290
+ },
291
+ {
292
+ "epoch": 0.35,
293
+ "learning_rate": 0.0002722192398539832,
294
+ "loss": 1.4701,
295
+ "step": 2250
296
+ },
297
+ {
298
+ "epoch": 0.36,
299
+ "learning_rate": 0.000271414000429461,
300
+ "loss": 1.4734,
301
+ "step": 2300
302
+ },
303
+ {
304
+ "epoch": 0.37,
305
+ "learning_rate": 0.0002706409705819197,
306
+ "loss": 1.5035,
307
+ "step": 2350
308
+ },
309
+ {
310
+ "epoch": 0.38,
311
+ "learning_rate": 0.00026983573115739744,
312
+ "loss": 1.4513,
313
+ "step": 2400
314
+ },
315
+ {
316
+ "epoch": 0.38,
317
+ "learning_rate": 0.00026904659652136567,
318
+ "loss": 1.4641,
319
+ "step": 2450
320
+ },
321
+ {
322
+ "epoch": 0.39,
323
+ "learning_rate": 0.0002682413570968434,
324
+ "loss": 1.4585,
325
+ "step": 2500
326
+ },
327
+ {
328
+ "epoch": 0.4,
329
+ "learning_rate": 0.00026743611767232123,
330
+ "loss": 1.4673,
331
+ "step": 2550
332
+ },
333
+ {
334
+ "epoch": 0.41,
335
+ "learning_rate": 0.0002666469830362894,
336
+ "loss": 1.4671,
337
+ "step": 2600
338
+ },
339
+ {
340
+ "epoch": 0.42,
341
+ "learning_rate": 0.0002658578484002577,
342
+ "loss": 1.4702,
343
+ "step": 2650
344
+ },
345
+ {
346
+ "epoch": 0.42,
347
+ "learning_rate": 0.00026508481855271634,
348
+ "loss": 1.4612,
349
+ "step": 2700
350
+ },
351
+ {
352
+ "epoch": 0.43,
353
+ "learning_rate": 0.0002642956839166845,
354
+ "loss": 1.4713,
355
+ "step": 2750
356
+ },
357
+ {
358
+ "epoch": 0.44,
359
+ "learning_rate": 0.00026350654928065275,
360
+ "loss": 1.4573,
361
+ "step": 2800
362
+ },
363
+ {
364
+ "epoch": 0.45,
365
+ "learning_rate": 0.000262717414644621,
366
+ "loss": 1.4586,
367
+ "step": 2850
368
+ },
369
+ {
370
+ "epoch": 0.45,
371
+ "learning_rate": 0.00026191217522009873,
372
+ "loss": 1.4674,
373
+ "step": 2900
374
+ },
375
+ {
376
+ "epoch": 0.46,
377
+ "learning_rate": 0.00026110693579557654,
378
+ "loss": 1.4466,
379
+ "step": 2950
380
+ },
381
+ {
382
+ "epoch": 0.47,
383
+ "learning_rate": 0.0002603339059480352,
384
+ "loss": 1.4897,
385
+ "step": 3000
386
+ },
387
+ {
388
+ "epoch": 0.47,
389
+ "eval_loss": 1.2417596578598022,
390
+ "eval_runtime": 94.8105,
391
+ "eval_samples_per_second": 119.523,
392
+ "eval_steps_per_second": 7.478,
393
+ "step": 3000
394
+ },
395
+ {
396
+ "epoch": 0.48,
397
+ "learning_rate": 0.0002595447713120034,
398
+ "loss": 1.4621,
399
+ "step": 3050
400
+ },
401
+ {
402
+ "epoch": 0.49,
403
+ "learning_rate": 0.0002587395318874812,
404
+ "loss": 1.4443,
405
+ "step": 3100
406
+ },
407
+ {
408
+ "epoch": 0.49,
409
+ "learning_rate": 0.0002579503972514494,
410
+ "loss": 1.4314,
411
+ "step": 3150
412
+ },
413
+ {
414
+ "epoch": 0.5,
415
+ "learning_rate": 0.0002571451578269272,
416
+ "loss": 1.4172,
417
+ "step": 3200
418
+ },
419
+ {
420
+ "epoch": 0.51,
421
+ "learning_rate": 0.00025637212797938587,
422
+ "loss": 1.4878,
423
+ "step": 3250
424
+ },
425
+ {
426
+ "epoch": 0.52,
427
+ "learning_rate": 0.00025558299334335404,
428
+ "loss": 1.4344,
429
+ "step": 3300
430
+ },
431
+ {
432
+ "epoch": 0.53,
433
+ "learning_rate": 0.00025477775391883185,
434
+ "loss": 1.4634,
435
+ "step": 3350
436
+ },
437
+ {
438
+ "epoch": 0.53,
439
+ "learning_rate": 0.0002539725144943096,
440
+ "loss": 1.4679,
441
+ "step": 3400
442
+ },
443
+ {
444
+ "epoch": 0.54,
445
+ "learning_rate": 0.00025318337985827784,
446
+ "loss": 1.4641,
447
+ "step": 3450
448
+ },
449
+ {
450
+ "epoch": 0.55,
451
+ "learning_rate": 0.00025239424522224607,
452
+ "loss": 1.4396,
453
+ "step": 3500
454
+ },
455
+ {
456
+ "epoch": 0.56,
457
+ "learning_rate": 0.00025160511058621425,
458
+ "loss": 1.485,
459
+ "step": 3550
460
+ },
461
+ {
462
+ "epoch": 0.56,
463
+ "learning_rate": 0.0002508159759501825,
464
+ "loss": 1.4355,
465
+ "step": 3600
466
+ },
467
+ {
468
+ "epoch": 0.57,
469
+ "learning_rate": 0.0002500107365256603,
470
+ "loss": 1.4419,
471
+ "step": 3650
472
+ },
473
+ {
474
+ "epoch": 0.58,
475
+ "learning_rate": 0.00024920549710113804,
476
+ "loss": 1.4224,
477
+ "step": 3700
478
+ },
479
+ {
480
+ "epoch": 0.59,
481
+ "learning_rate": 0.0002484002576766158,
482
+ "loss": 1.4473,
483
+ "step": 3750
484
+ },
485
+ {
486
+ "epoch": 0.6,
487
+ "learning_rate": 0.0002475950182520936,
488
+ "loss": 1.4341,
489
+ "step": 3800
490
+ },
491
+ {
492
+ "epoch": 0.6,
493
+ "learning_rate": 0.00024678977882757136,
494
+ "loss": 1.4463,
495
+ "step": 3850
496
+ },
497
+ {
498
+ "epoch": 0.61,
499
+ "learning_rate": 0.00024598453940304917,
500
+ "loss": 1.4348,
501
+ "step": 3900
502
+ },
503
+ {
504
+ "epoch": 0.62,
505
+ "learning_rate": 0.00024517929997852693,
506
+ "loss": 1.4326,
507
+ "step": 3950
508
+ },
509
+ {
510
+ "epoch": 0.63,
511
+ "learning_rate": 0.00024439016534249516,
512
+ "loss": 1.4586,
513
+ "step": 4000
514
+ },
515
+ {
516
+ "epoch": 0.63,
517
+ "eval_loss": 1.2329678535461426,
518
+ "eval_runtime": 94.8153,
519
+ "eval_samples_per_second": 119.517,
520
+ "eval_steps_per_second": 7.478,
521
+ "step": 4000
522
+ },
523
+ {
524
+ "epoch": 0.64,
525
+ "learning_rate": 0.00024360103070646336,
526
+ "loss": 1.4624,
527
+ "step": 4050
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "learning_rate": 0.00024282800085892204,
532
+ "loss": 1.455,
533
+ "step": 4100
534
+ },
535
+ {
536
+ "epoch": 0.65,
537
+ "learning_rate": 0.00024202276143439982,
538
+ "loss": 1.4294,
539
+ "step": 4150
540
+ },
541
+ {
542
+ "epoch": 0.66,
543
+ "learning_rate": 0.00024124973158685847,
544
+ "loss": 1.4675,
545
+ "step": 4200
546
+ },
547
+ {
548
+ "epoch": 0.67,
549
+ "learning_rate": 0.00024044449216233625,
550
+ "loss": 1.432,
551
+ "step": 4250
552
+ },
553
+ {
554
+ "epoch": 0.67,
555
+ "learning_rate": 0.00023963925273781404,
556
+ "loss": 1.4357,
557
+ "step": 4300
558
+ },
559
+ {
560
+ "epoch": 0.68,
561
+ "learning_rate": 0.0002388340133132918,
562
+ "loss": 1.4419,
563
+ "step": 4350
564
+ },
565
+ {
566
+ "epoch": 0.69,
567
+ "learning_rate": 0.00023802877388876957,
568
+ "loss": 1.4272,
569
+ "step": 4400
570
+ },
571
+ {
572
+ "epoch": 0.7,
573
+ "learning_rate": 0.00023722353446424736,
574
+ "loss": 1.4133,
575
+ "step": 4450
576
+ },
577
+ {
578
+ "epoch": 0.71,
579
+ "learning_rate": 0.0002364182950397251,
580
+ "loss": 1.434,
581
+ "step": 4500
582
+ },
583
+ {
584
+ "epoch": 0.71,
585
+ "learning_rate": 0.0002356130556152029,
586
+ "loss": 1.4218,
587
+ "step": 4550
588
+ },
589
+ {
590
+ "epoch": 0.72,
591
+ "learning_rate": 0.0002348239209791711,
592
+ "loss": 1.4682,
593
+ "step": 4600
594
+ },
595
+ {
596
+ "epoch": 0.73,
597
+ "learning_rate": 0.00023401868155464888,
598
+ "loss": 1.4333,
599
+ "step": 4650
600
+ },
601
+ {
602
+ "epoch": 0.74,
603
+ "learning_rate": 0.00023321344213012666,
604
+ "loss": 1.4359,
605
+ "step": 4700
606
+ },
607
+ {
608
+ "epoch": 0.74,
609
+ "learning_rate": 0.00023240820270560445,
610
+ "loss": 1.4054,
611
+ "step": 4750
612
+ },
613
+ {
614
+ "epoch": 0.75,
615
+ "learning_rate": 0.00023160296328108223,
616
+ "loss": 1.4215,
617
+ "step": 4800
618
+ },
619
+ {
620
+ "epoch": 0.76,
621
+ "learning_rate": 0.00023081382864505043,
622
+ "loss": 1.4471,
623
+ "step": 4850
624
+ },
625
+ {
626
+ "epoch": 0.77,
627
+ "learning_rate": 0.00023000858922052821,
628
+ "loss": 1.4238,
629
+ "step": 4900
630
+ },
631
+ {
632
+ "epoch": 0.78,
633
+ "learning_rate": 0.000229203349796006,
634
+ "loss": 1.4218,
635
+ "step": 4950
636
+ },
637
+ {
638
+ "epoch": 0.78,
639
+ "learning_rate": 0.00022839811037148378,
640
+ "loss": 1.4419,
641
+ "step": 5000
642
+ },
643
+ {
644
+ "epoch": 0.78,
645
+ "eval_loss": 1.22481107711792,
646
+ "eval_runtime": 95.042,
647
+ "eval_samples_per_second": 119.231,
648
+ "eval_steps_per_second": 7.46,
649
+ "step": 5000
650
+ },
651
+ {
652
+ "epoch": 0.79,
653
+ "learning_rate": 0.00022760897573545198,
654
+ "loss": 1.4405,
655
+ "step": 5050
656
+ },
657
+ {
658
+ "epoch": 0.8,
659
+ "learning_rate": 0.00022683594588791063,
660
+ "loss": 1.449,
661
+ "step": 5100
662
+ },
663
+ {
664
+ "epoch": 0.81,
665
+ "learning_rate": 0.0002260468112518789,
666
+ "loss": 1.4233,
667
+ "step": 5150
668
+ },
669
+ {
670
+ "epoch": 0.82,
671
+ "learning_rate": 0.00022524157182735667,
672
+ "loss": 1.423,
673
+ "step": 5200
674
+ },
675
+ {
676
+ "epoch": 0.82,
677
+ "learning_rate": 0.0002244363324028344,
678
+ "loss": 1.4315,
679
+ "step": 5250
680
+ },
681
+ {
682
+ "epoch": 0.83,
683
+ "learning_rate": 0.00022363109297831218,
684
+ "loss": 1.418,
685
+ "step": 5300
686
+ },
687
+ {
688
+ "epoch": 0.84,
689
+ "learning_rate": 0.00022282585355378997,
690
+ "loss": 1.4056,
691
+ "step": 5350
692
+ },
693
+ {
694
+ "epoch": 0.85,
695
+ "learning_rate": 0.00022202061412926775,
696
+ "loss": 1.4351,
697
+ "step": 5400
698
+ },
699
+ {
700
+ "epoch": 0.85,
701
+ "learning_rate": 0.00022123147949323598,
702
+ "loss": 1.4377,
703
+ "step": 5450
704
+ },
705
+ {
706
+ "epoch": 0.86,
707
+ "learning_rate": 0.00022042624006871374,
708
+ "loss": 1.4065,
709
+ "step": 5500
710
+ },
711
+ {
712
+ "epoch": 0.87,
713
+ "learning_rate": 0.00021963710543268196,
714
+ "loss": 1.4246,
715
+ "step": 5550
716
+ },
717
+ {
718
+ "epoch": 0.88,
719
+ "learning_rate": 0.00021886407558514064,
720
+ "loss": 1.4607,
721
+ "step": 5600
722
+ },
723
+ {
724
+ "epoch": 0.89,
725
+ "learning_rate": 0.0002180588361606184,
726
+ "loss": 1.4211,
727
+ "step": 5650
728
+ },
729
+ {
730
+ "epoch": 0.89,
731
+ "learning_rate": 0.00021728580631307707,
732
+ "loss": 1.4475,
733
+ "step": 5700
734
+ },
735
+ {
736
+ "epoch": 0.9,
737
+ "learning_rate": 0.00021648056688855486,
738
+ "loss": 1.3977,
739
+ "step": 5750
740
+ },
741
+ {
742
+ "epoch": 0.91,
743
+ "learning_rate": 0.00021567532746403264,
744
+ "loss": 1.4034,
745
+ "step": 5800
746
+ },
747
+ {
748
+ "epoch": 0.92,
749
+ "learning_rate": 0.00021487008803951037,
750
+ "loss": 1.4237,
751
+ "step": 5850
752
+ },
753
+ {
754
+ "epoch": 0.93,
755
+ "learning_rate": 0.00021406484861498815,
756
+ "loss": 1.4371,
757
+ "step": 5900
758
+ },
759
+ {
760
+ "epoch": 0.93,
761
+ "learning_rate": 0.00021325960919046593,
762
+ "loss": 1.4416,
763
+ "step": 5950
764
+ },
765
+ {
766
+ "epoch": 0.94,
767
+ "learning_rate": 0.0002124704745544342,
768
+ "loss": 1.4164,
769
+ "step": 6000
770
+ },
771
+ {
772
+ "epoch": 0.94,
773
+ "eval_loss": 1.2173230648040771,
774
+ "eval_runtime": 95.0111,
775
+ "eval_samples_per_second": 119.27,
776
+ "eval_steps_per_second": 7.462,
777
+ "step": 6000
778
+ },
779
+ {
780
+ "epoch": 0.95,
781
+ "learning_rate": 0.00021166523512991192,
782
+ "loss": 1.397,
783
+ "step": 6050
784
+ },
785
+ {
786
+ "epoch": 0.96,
787
+ "learning_rate": 0.00021089220528237062,
788
+ "loss": 1.4268,
789
+ "step": 6100
790
+ },
791
+ {
792
+ "epoch": 0.96,
793
+ "learning_rate": 0.00021010307064633883,
794
+ "loss": 1.4388,
795
+ "step": 6150
796
+ },
797
+ {
798
+ "epoch": 0.97,
799
+ "learning_rate": 0.00020931393601030706,
800
+ "loss": 1.4208,
801
+ "step": 6200
802
+ },
803
+ {
804
+ "epoch": 0.98,
805
+ "learning_rate": 0.00020852480137427526,
806
+ "loss": 1.4352,
807
+ "step": 6250
808
+ },
809
+ {
810
+ "epoch": 0.99,
811
+ "learning_rate": 0.00020771956194975304,
812
+ "loss": 1.4053,
813
+ "step": 6300
814
+ },
815
+ {
816
+ "epoch": 1.0,
817
+ "learning_rate": 0.00020691432252523082,
818
+ "loss": 1.4242,
819
+ "step": 6350
820
+ },
821
+ {
822
+ "epoch": 1.0,
823
+ "learning_rate": 0.00020612518788919903,
824
+ "loss": 1.4197,
825
+ "step": 6400
826
+ },
827
+ {
828
+ "epoch": 1.01,
829
+ "learning_rate": 0.00020533605325316726,
830
+ "loss": 1.4225,
831
+ "step": 6450
832
+ },
833
+ {
834
+ "epoch": 1.02,
835
+ "learning_rate": 0.00020453081382864504,
836
+ "loss": 1.4188,
837
+ "step": 6500
838
+ },
839
+ {
840
+ "epoch": 1.03,
841
+ "learning_rate": 0.00020375778398110372,
842
+ "loss": 1.4347,
843
+ "step": 6550
844
+ },
845
+ {
846
+ "epoch": 1.04,
847
+ "learning_rate": 0.00020296864934507192,
848
+ "loss": 1.4371,
849
+ "step": 6600
850
+ },
851
+ {
852
+ "epoch": 1.04,
853
+ "learning_rate": 0.0002021634099205497,
854
+ "loss": 1.4228,
855
+ "step": 6650
856
+ },
857
+ {
858
+ "epoch": 1.05,
859
+ "learning_rate": 0.00020137427528451793,
860
+ "loss": 1.4289,
861
+ "step": 6700
862
+ },
863
+ {
864
+ "epoch": 1.06,
865
+ "learning_rate": 0.0002005690358599957,
866
+ "loss": 1.4224,
867
+ "step": 6750
868
+ },
869
+ {
870
+ "epoch": 1.07,
871
+ "learning_rate": 0.00019981211080094478,
872
+ "loss": 1.4783,
873
+ "step": 6800
874
+ },
875
+ {
876
+ "epoch": 1.07,
877
+ "learning_rate": 0.00019902297616491304,
878
+ "loss": 1.4469,
879
+ "step": 6850
880
+ },
881
+ {
882
+ "epoch": 1.08,
883
+ "learning_rate": 0.00019823384152888124,
884
+ "loss": 1.4335,
885
+ "step": 6900
886
+ },
887
+ {
888
+ "epoch": 1.09,
889
+ "learning_rate": 0.000197428602104359,
890
+ "loss": 1.3973,
891
+ "step": 6950
892
+ },
893
+ {
894
+ "epoch": 1.1,
895
+ "learning_rate": 0.0001966394674683272,
896
+ "loss": 1.4493,
897
+ "step": 7000
898
+ },
899
+ {
900
+ "epoch": 1.1,
901
+ "eval_loss": 1.210498571395874,
902
+ "eval_runtime": 95.0044,
903
+ "eval_samples_per_second": 119.279,
904
+ "eval_steps_per_second": 7.463,
905
+ "step": 7000
906
+ }
907
+ ],
908
+ "logging_steps": 50,
909
+ "max_steps": 19128,
910
+ "num_input_tokens_seen": 0,
911
+ "num_train_epochs": 3,
912
+ "save_steps": 1000,
913
+ "total_flos": 1.3762234753273037e+17,
914
+ "train_batch_size": 16,
915
+ "trial_name": null,
916
+ "trial_params": null
917
+ }
checkpoint-7000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:020399f67c678641c05351df778629bde428b25cc882f50dae492e08cb9604ee
3
+ size 5073
checkpoint-7000/training_metrics.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "step": 7000,
3
+ "epoch": 1.0977809142946757,
4
+ "best_eval_loss": 0.5003042221069336,
5
+ "checkpoint_number": 7,
6
+ "recent_metrics": [
7
+ {
8
+ "step": 6600,
9
+ "epoch": 1.04,
10
+ "loss": 1.4371,
11
+ "learning_rate": 0.00020296864934507192,
12
+ "gpu_memory_gb": 0.8661794662475586,
13
+ "system_memory_percent": 6.8
14
+ },
15
+ {
16
+ "step": 6650,
17
+ "epoch": 1.04,
18
+ "loss": 1.4228,
19
+ "learning_rate": 0.0002021634099205497,
20
+ "gpu_memory_gb": 0.8661794662475586,
21
+ "system_memory_percent": 6.8
22
+ },
23
+ {
24
+ "step": 6700,
25
+ "epoch": 1.05,
26
+ "loss": 1.4289,
27
+ "learning_rate": 0.00020137427528451793,
28
+ "gpu_memory_gb": 0.8661794662475586,
29
+ "system_memory_percent": 6.9
30
+ },
31
+ {
32
+ "step": 6750,
33
+ "epoch": 1.06,
34
+ "loss": 1.4224,
35
+ "learning_rate": 0.0002005690358599957,
36
+ "gpu_memory_gb": 0.8661794662475586,
37
+ "system_memory_percent": 6.9
38
+ },
39
+ {
40
+ "step": 6800,
41
+ "epoch": 1.07,
42
+ "loss": 1.4783,
43
+ "learning_rate": 0.00019981211080094478,
44
+ "gpu_memory_gb": 0.8661794662475586,
45
+ "system_memory_percent": 6.9
46
+ },
47
+ {
48
+ "step": 6850,
49
+ "epoch": 1.07,
50
+ "loss": 1.4469,
51
+ "learning_rate": 0.00019902297616491304,
52
+ "gpu_memory_gb": 0.8661794662475586,
53
+ "system_memory_percent": 6.9
54
+ },
55
+ {
56
+ "step": 6900,
57
+ "epoch": 1.08,
58
+ "loss": 1.4335,
59
+ "learning_rate": 0.00019823384152888124,
60
+ "gpu_memory_gb": 0.8661794662475586,
61
+ "system_memory_percent": 6.9
62
+ },
63
+ {
64
+ "step": 6950,
65
+ "epoch": 1.09,
66
+ "loss": 1.3973,
67
+ "learning_rate": 0.000197428602104359,
68
+ "gpu_memory_gb": 0.8661794662475586,
69
+ "system_memory_percent": 6.9
70
+ },
71
+ {
72
+ "step": 7000,
73
+ "epoch": 1.1,
74
+ "loss": 1.4493,
75
+ "learning_rate": 0.0001966394674683272,
76
+ "gpu_memory_gb": 0.8661794662475586,
77
+ "system_memory_percent": 6.9
78
+ },
79
+ {
80
+ "step": 7000,
81
+ "epoch": 1.1,
82
+ "eval_loss": 1.210498571395874,
83
+ "eval_runtime": 95.0044,
84
+ "eval_samples_per_second": 119.279,
85
+ "eval_steps_per_second": 7.463,
86
+ "gpu_memory_gb": 0.8661794662475586,
87
+ "system_memory_percent": 6.9
88
+ }
89
+ ]
90
+ }