ranjan56cse commited on
Commit
d25bfcc
·
verified ·
1 Parent(s): 1966c0a

Checkpoint 16 at step 16000

Browse files
checkpoint-16000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google-t5/t5-base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.0
checkpoint-16000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google-t5/t5-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v",
23
+ "q"
24
+ ],
25
+ "task_type": "SEQ_2_SEQ_LM"
26
+ }
checkpoint-16000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d11ec0a17acf750db437799bc80d1a2b9d6c8e4c600859e3c5ed67537cb503e7
3
+ size 7098016
checkpoint-16000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e4992c32ab2fe8569b7714e9dc6297aa9204b9453065fabb7cc100bb1a6af3
3
+ size 14277259
checkpoint-16000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40cf3144b18bdd1c3606f53bea72ff3b5d2f617348de3eee54a065dc28ec75fb
3
+ size 14645
checkpoint-16000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:241a1effee64c67d4a8f871310906ab4404335a122c053b27e3a2c4c5480249a
3
+ size 1465
checkpoint-16000/trainer_state.json ADDED
@@ -0,0 +1,2069 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5003042221069336,
3
+ "best_model_checkpoint": "./t5_checkpoints_full/checkpoint-1000",
4
+ "epoch": 2.5092135183878304,
5
+ "eval_steps": 1000,
6
+ "global_step": 16000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.88e-05,
14
+ "loss": 12.5022,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 5.82e-05,
20
+ "loss": 10.3469,
21
+ "step": 100
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 8.819999999999999e-05,
26
+ "loss": 4.02,
27
+ "step": 150
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 0.0001182,
32
+ "loss": 0.9201,
33
+ "step": 200
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 0.0001482,
38
+ "loss": 0.7357,
39
+ "step": 250
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 0.00017699999999999997,
44
+ "loss": 0.6602,
45
+ "step": 300
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "learning_rate": 0.00020699999999999996,
50
+ "loss": 0.6121,
51
+ "step": 350
52
+ },
53
+ {
54
+ "epoch": 0.06,
55
+ "learning_rate": 0.000237,
56
+ "loss": 0.5817,
57
+ "step": 400
58
+ },
59
+ {
60
+ "epoch": 0.07,
61
+ "learning_rate": 0.000267,
62
+ "loss": 0.5916,
63
+ "step": 450
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 0.00029699999999999996,
68
+ "loss": 0.5675,
69
+ "step": 500
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 0.0002992913893064204,
74
+ "loss": 0.57,
75
+ "step": 550
76
+ },
77
+ {
78
+ "epoch": 0.09,
79
+ "learning_rate": 0.0002984861498818982,
80
+ "loss": 0.561,
81
+ "step": 600
82
+ },
83
+ {
84
+ "epoch": 0.1,
85
+ "learning_rate": 0.000297680910457376,
86
+ "loss": 0.5669,
87
+ "step": 650
88
+ },
89
+ {
90
+ "epoch": 0.11,
91
+ "learning_rate": 0.00029687567103285373,
92
+ "loss": 0.5659,
93
+ "step": 700
94
+ },
95
+ {
96
+ "epoch": 0.12,
97
+ "learning_rate": 0.0002960704316083315,
98
+ "loss": 0.5673,
99
+ "step": 750
100
+ },
101
+ {
102
+ "epoch": 0.13,
103
+ "learning_rate": 0.0002952651921838093,
104
+ "loss": 0.5619,
105
+ "step": 800
106
+ },
107
+ {
108
+ "epoch": 0.13,
109
+ "learning_rate": 0.00029449216233626795,
110
+ "loss": 0.5719,
111
+ "step": 850
112
+ },
113
+ {
114
+ "epoch": 0.14,
115
+ "learning_rate": 0.00029368692291174576,
116
+ "loss": 0.5576,
117
+ "step": 900
118
+ },
119
+ {
120
+ "epoch": 0.15,
121
+ "learning_rate": 0.0002928816834872235,
122
+ "loss": 0.5567,
123
+ "step": 950
124
+ },
125
+ {
126
+ "epoch": 0.16,
127
+ "learning_rate": 0.00029210865363968216,
128
+ "loss": 0.5597,
129
+ "step": 1000
130
+ },
131
+ {
132
+ "epoch": 0.16,
133
+ "eval_loss": 0.5003042221069336,
134
+ "eval_runtime": 95.3235,
135
+ "eval_samples_per_second": 118.879,
136
+ "eval_steps_per_second": 7.438,
137
+ "step": 1000
138
+ },
139
+ {
140
+ "epoch": 0.16,
141
+ "learning_rate": 0.0002913195190036504,
142
+ "loss": 0.5565,
143
+ "step": 1050
144
+ },
145
+ {
146
+ "epoch": 0.17,
147
+ "learning_rate": 0.00029057869873308994,
148
+ "loss": 0.5767,
149
+ "step": 1100
150
+ },
151
+ {
152
+ "epoch": 0.18,
153
+ "learning_rate": 0.00028978956409705817,
154
+ "loss": 0.562,
155
+ "step": 1150
156
+ },
157
+ {
158
+ "epoch": 0.19,
159
+ "learning_rate": 0.0002890004294610264,
160
+ "loss": 0.5864,
161
+ "step": 1200
162
+ },
163
+ {
164
+ "epoch": 0.2,
165
+ "learning_rate": 0.00028819519003650415,
166
+ "loss": 0.626,
167
+ "step": 1250
168
+ },
169
+ {
170
+ "epoch": 0.2,
171
+ "learning_rate": 0.0002873899506119819,
172
+ "loss": 0.7742,
173
+ "step": 1300
174
+ },
175
+ {
176
+ "epoch": 0.21,
177
+ "learning_rate": 0.0002866169207644406,
178
+ "loss": 1.1101,
179
+ "step": 1350
180
+ },
181
+ {
182
+ "epoch": 0.22,
183
+ "learning_rate": 0.00028581168133991837,
184
+ "loss": 1.3211,
185
+ "step": 1400
186
+ },
187
+ {
188
+ "epoch": 0.23,
189
+ "learning_rate": 0.0002850064419153961,
190
+ "loss": 1.413,
191
+ "step": 1450
192
+ },
193
+ {
194
+ "epoch": 0.24,
195
+ "learning_rate": 0.00028420120249087393,
196
+ "loss": 1.4265,
197
+ "step": 1500
198
+ },
199
+ {
200
+ "epoch": 0.24,
201
+ "learning_rate": 0.0002834281726433326,
202
+ "loss": 1.47,
203
+ "step": 1550
204
+ },
205
+ {
206
+ "epoch": 0.25,
207
+ "learning_rate": 0.00028262293321881034,
208
+ "loss": 1.4561,
209
+ "step": 1600
210
+ },
211
+ {
212
+ "epoch": 0.26,
213
+ "learning_rate": 0.0002818337985827786,
214
+ "loss": 1.4693,
215
+ "step": 1650
216
+ },
217
+ {
218
+ "epoch": 0.27,
219
+ "learning_rate": 0.0002810285591582563,
220
+ "loss": 1.4729,
221
+ "step": 1700
222
+ },
223
+ {
224
+ "epoch": 0.27,
225
+ "learning_rate": 0.00028022331973373413,
226
+ "loss": 1.4599,
227
+ "step": 1750
228
+ },
229
+ {
230
+ "epoch": 0.28,
231
+ "learning_rate": 0.0002794180803092119,
232
+ "loss": 1.4725,
233
+ "step": 1800
234
+ },
235
+ {
236
+ "epoch": 0.29,
237
+ "learning_rate": 0.0002786128408846897,
238
+ "loss": 1.4503,
239
+ "step": 1850
240
+ },
241
+ {
242
+ "epoch": 0.3,
243
+ "learning_rate": 0.0002778237062486579,
244
+ "loss": 1.4812,
245
+ "step": 1900
246
+ },
247
+ {
248
+ "epoch": 0.31,
249
+ "learning_rate": 0.0002770184668241357,
250
+ "loss": 1.4761,
251
+ "step": 1950
252
+ },
253
+ {
254
+ "epoch": 0.31,
255
+ "learning_rate": 0.00027621322739961344,
256
+ "loss": 1.496,
257
+ "step": 2000
258
+ },
259
+ {
260
+ "epoch": 0.31,
261
+ "eval_loss": 1.251204252243042,
262
+ "eval_runtime": 94.8348,
263
+ "eval_samples_per_second": 119.492,
264
+ "eval_steps_per_second": 7.476,
265
+ "step": 2000
266
+ },
267
+ {
268
+ "epoch": 0.32,
269
+ "learning_rate": 0.00027542409276358167,
270
+ "loss": 1.4488,
271
+ "step": 2050
272
+ },
273
+ {
274
+ "epoch": 0.33,
275
+ "learning_rate": 0.00027461885333905943,
276
+ "loss": 1.455,
277
+ "step": 2100
278
+ },
279
+ {
280
+ "epoch": 0.34,
281
+ "learning_rate": 0.00027381361391453724,
282
+ "loss": 1.4353,
283
+ "step": 2150
284
+ },
285
+ {
286
+ "epoch": 0.35,
287
+ "learning_rate": 0.000273008374490015,
288
+ "loss": 1.4524,
289
+ "step": 2200
290
+ },
291
+ {
292
+ "epoch": 0.35,
293
+ "learning_rate": 0.0002722192398539832,
294
+ "loss": 1.4701,
295
+ "step": 2250
296
+ },
297
+ {
298
+ "epoch": 0.36,
299
+ "learning_rate": 0.000271414000429461,
300
+ "loss": 1.4734,
301
+ "step": 2300
302
+ },
303
+ {
304
+ "epoch": 0.37,
305
+ "learning_rate": 0.0002706409705819197,
306
+ "loss": 1.5035,
307
+ "step": 2350
308
+ },
309
+ {
310
+ "epoch": 0.38,
311
+ "learning_rate": 0.00026983573115739744,
312
+ "loss": 1.4513,
313
+ "step": 2400
314
+ },
315
+ {
316
+ "epoch": 0.38,
317
+ "learning_rate": 0.00026904659652136567,
318
+ "loss": 1.4641,
319
+ "step": 2450
320
+ },
321
+ {
322
+ "epoch": 0.39,
323
+ "learning_rate": 0.0002682413570968434,
324
+ "loss": 1.4585,
325
+ "step": 2500
326
+ },
327
+ {
328
+ "epoch": 0.4,
329
+ "learning_rate": 0.00026743611767232123,
330
+ "loss": 1.4673,
331
+ "step": 2550
332
+ },
333
+ {
334
+ "epoch": 0.41,
335
+ "learning_rate": 0.0002666469830362894,
336
+ "loss": 1.4671,
337
+ "step": 2600
338
+ },
339
+ {
340
+ "epoch": 0.42,
341
+ "learning_rate": 0.0002658578484002577,
342
+ "loss": 1.4702,
343
+ "step": 2650
344
+ },
345
+ {
346
+ "epoch": 0.42,
347
+ "learning_rate": 0.00026508481855271634,
348
+ "loss": 1.4612,
349
+ "step": 2700
350
+ },
351
+ {
352
+ "epoch": 0.43,
353
+ "learning_rate": 0.0002642956839166845,
354
+ "loss": 1.4713,
355
+ "step": 2750
356
+ },
357
+ {
358
+ "epoch": 0.44,
359
+ "learning_rate": 0.00026350654928065275,
360
+ "loss": 1.4573,
361
+ "step": 2800
362
+ },
363
+ {
364
+ "epoch": 0.45,
365
+ "learning_rate": 0.000262717414644621,
366
+ "loss": 1.4586,
367
+ "step": 2850
368
+ },
369
+ {
370
+ "epoch": 0.45,
371
+ "learning_rate": 0.00026191217522009873,
372
+ "loss": 1.4674,
373
+ "step": 2900
374
+ },
375
+ {
376
+ "epoch": 0.46,
377
+ "learning_rate": 0.00026110693579557654,
378
+ "loss": 1.4466,
379
+ "step": 2950
380
+ },
381
+ {
382
+ "epoch": 0.47,
383
+ "learning_rate": 0.0002603339059480352,
384
+ "loss": 1.4897,
385
+ "step": 3000
386
+ },
387
+ {
388
+ "epoch": 0.47,
389
+ "eval_loss": 1.2417596578598022,
390
+ "eval_runtime": 94.8105,
391
+ "eval_samples_per_second": 119.523,
392
+ "eval_steps_per_second": 7.478,
393
+ "step": 3000
394
+ },
395
+ {
396
+ "epoch": 0.48,
397
+ "learning_rate": 0.0002595447713120034,
398
+ "loss": 1.4621,
399
+ "step": 3050
400
+ },
401
+ {
402
+ "epoch": 0.49,
403
+ "learning_rate": 0.0002587395318874812,
404
+ "loss": 1.4443,
405
+ "step": 3100
406
+ },
407
+ {
408
+ "epoch": 0.49,
409
+ "learning_rate": 0.0002579503972514494,
410
+ "loss": 1.4314,
411
+ "step": 3150
412
+ },
413
+ {
414
+ "epoch": 0.5,
415
+ "learning_rate": 0.0002571451578269272,
416
+ "loss": 1.4172,
417
+ "step": 3200
418
+ },
419
+ {
420
+ "epoch": 0.51,
421
+ "learning_rate": 0.00025637212797938587,
422
+ "loss": 1.4878,
423
+ "step": 3250
424
+ },
425
+ {
426
+ "epoch": 0.52,
427
+ "learning_rate": 0.00025558299334335404,
428
+ "loss": 1.4344,
429
+ "step": 3300
430
+ },
431
+ {
432
+ "epoch": 0.53,
433
+ "learning_rate": 0.00025477775391883185,
434
+ "loss": 1.4634,
435
+ "step": 3350
436
+ },
437
+ {
438
+ "epoch": 0.53,
439
+ "learning_rate": 0.0002539725144943096,
440
+ "loss": 1.4679,
441
+ "step": 3400
442
+ },
443
+ {
444
+ "epoch": 0.54,
445
+ "learning_rate": 0.00025318337985827784,
446
+ "loss": 1.4641,
447
+ "step": 3450
448
+ },
449
+ {
450
+ "epoch": 0.55,
451
+ "learning_rate": 0.00025239424522224607,
452
+ "loss": 1.4396,
453
+ "step": 3500
454
+ },
455
+ {
456
+ "epoch": 0.56,
457
+ "learning_rate": 0.00025160511058621425,
458
+ "loss": 1.485,
459
+ "step": 3550
460
+ },
461
+ {
462
+ "epoch": 0.56,
463
+ "learning_rate": 0.0002508159759501825,
464
+ "loss": 1.4355,
465
+ "step": 3600
466
+ },
467
+ {
468
+ "epoch": 0.57,
469
+ "learning_rate": 0.0002500107365256603,
470
+ "loss": 1.4419,
471
+ "step": 3650
472
+ },
473
+ {
474
+ "epoch": 0.58,
475
+ "learning_rate": 0.00024920549710113804,
476
+ "loss": 1.4224,
477
+ "step": 3700
478
+ },
479
+ {
480
+ "epoch": 0.59,
481
+ "learning_rate": 0.0002484002576766158,
482
+ "loss": 1.4473,
483
+ "step": 3750
484
+ },
485
+ {
486
+ "epoch": 0.6,
487
+ "learning_rate": 0.0002475950182520936,
488
+ "loss": 1.4341,
489
+ "step": 3800
490
+ },
491
+ {
492
+ "epoch": 0.6,
493
+ "learning_rate": 0.00024678977882757136,
494
+ "loss": 1.4463,
495
+ "step": 3850
496
+ },
497
+ {
498
+ "epoch": 0.61,
499
+ "learning_rate": 0.00024598453940304917,
500
+ "loss": 1.4348,
501
+ "step": 3900
502
+ },
503
+ {
504
+ "epoch": 0.62,
505
+ "learning_rate": 0.00024517929997852693,
506
+ "loss": 1.4326,
507
+ "step": 3950
508
+ },
509
+ {
510
+ "epoch": 0.63,
511
+ "learning_rate": 0.00024439016534249516,
512
+ "loss": 1.4586,
513
+ "step": 4000
514
+ },
515
+ {
516
+ "epoch": 0.63,
517
+ "eval_loss": 1.2329678535461426,
518
+ "eval_runtime": 94.8153,
519
+ "eval_samples_per_second": 119.517,
520
+ "eval_steps_per_second": 7.478,
521
+ "step": 4000
522
+ },
523
+ {
524
+ "epoch": 0.64,
525
+ "learning_rate": 0.00024360103070646336,
526
+ "loss": 1.4624,
527
+ "step": 4050
528
+ },
529
+ {
530
+ "epoch": 0.64,
531
+ "learning_rate": 0.00024282800085892204,
532
+ "loss": 1.455,
533
+ "step": 4100
534
+ },
535
+ {
536
+ "epoch": 0.65,
537
+ "learning_rate": 0.00024202276143439982,
538
+ "loss": 1.4294,
539
+ "step": 4150
540
+ },
541
+ {
542
+ "epoch": 0.66,
543
+ "learning_rate": 0.00024124973158685847,
544
+ "loss": 1.4675,
545
+ "step": 4200
546
+ },
547
+ {
548
+ "epoch": 0.67,
549
+ "learning_rate": 0.00024044449216233625,
550
+ "loss": 1.432,
551
+ "step": 4250
552
+ },
553
+ {
554
+ "epoch": 0.67,
555
+ "learning_rate": 0.00023963925273781404,
556
+ "loss": 1.4357,
557
+ "step": 4300
558
+ },
559
+ {
560
+ "epoch": 0.68,
561
+ "learning_rate": 0.0002388340133132918,
562
+ "loss": 1.4419,
563
+ "step": 4350
564
+ },
565
+ {
566
+ "epoch": 0.69,
567
+ "learning_rate": 0.00023802877388876957,
568
+ "loss": 1.4272,
569
+ "step": 4400
570
+ },
571
+ {
572
+ "epoch": 0.7,
573
+ "learning_rate": 0.00023722353446424736,
574
+ "loss": 1.4133,
575
+ "step": 4450
576
+ },
577
+ {
578
+ "epoch": 0.71,
579
+ "learning_rate": 0.0002364182950397251,
580
+ "loss": 1.434,
581
+ "step": 4500
582
+ },
583
+ {
584
+ "epoch": 0.71,
585
+ "learning_rate": 0.0002356130556152029,
586
+ "loss": 1.4218,
587
+ "step": 4550
588
+ },
589
+ {
590
+ "epoch": 0.72,
591
+ "learning_rate": 0.0002348239209791711,
592
+ "loss": 1.4682,
593
+ "step": 4600
594
+ },
595
+ {
596
+ "epoch": 0.73,
597
+ "learning_rate": 0.00023401868155464888,
598
+ "loss": 1.4333,
599
+ "step": 4650
600
+ },
601
+ {
602
+ "epoch": 0.74,
603
+ "learning_rate": 0.00023321344213012666,
604
+ "loss": 1.4359,
605
+ "step": 4700
606
+ },
607
+ {
608
+ "epoch": 0.74,
609
+ "learning_rate": 0.00023240820270560445,
610
+ "loss": 1.4054,
611
+ "step": 4750
612
+ },
613
+ {
614
+ "epoch": 0.75,
615
+ "learning_rate": 0.00023160296328108223,
616
+ "loss": 1.4215,
617
+ "step": 4800
618
+ },
619
+ {
620
+ "epoch": 0.76,
621
+ "learning_rate": 0.00023081382864505043,
622
+ "loss": 1.4471,
623
+ "step": 4850
624
+ },
625
+ {
626
+ "epoch": 0.77,
627
+ "learning_rate": 0.00023000858922052821,
628
+ "loss": 1.4238,
629
+ "step": 4900
630
+ },
631
+ {
632
+ "epoch": 0.78,
633
+ "learning_rate": 0.000229203349796006,
634
+ "loss": 1.4218,
635
+ "step": 4950
636
+ },
637
+ {
638
+ "epoch": 0.78,
639
+ "learning_rate": 0.00022839811037148378,
640
+ "loss": 1.4419,
641
+ "step": 5000
642
+ },
643
+ {
644
+ "epoch": 0.78,
645
+ "eval_loss": 1.22481107711792,
646
+ "eval_runtime": 95.042,
647
+ "eval_samples_per_second": 119.231,
648
+ "eval_steps_per_second": 7.46,
649
+ "step": 5000
650
+ },
651
+ {
652
+ "epoch": 0.79,
653
+ "learning_rate": 0.00022760897573545198,
654
+ "loss": 1.4405,
655
+ "step": 5050
656
+ },
657
+ {
658
+ "epoch": 0.8,
659
+ "learning_rate": 0.00022683594588791063,
660
+ "loss": 1.449,
661
+ "step": 5100
662
+ },
663
+ {
664
+ "epoch": 0.81,
665
+ "learning_rate": 0.0002260468112518789,
666
+ "loss": 1.4233,
667
+ "step": 5150
668
+ },
669
+ {
670
+ "epoch": 0.82,
671
+ "learning_rate": 0.00022524157182735667,
672
+ "loss": 1.423,
673
+ "step": 5200
674
+ },
675
+ {
676
+ "epoch": 0.82,
677
+ "learning_rate": 0.0002244363324028344,
678
+ "loss": 1.4315,
679
+ "step": 5250
680
+ },
681
+ {
682
+ "epoch": 0.83,
683
+ "learning_rate": 0.00022363109297831218,
684
+ "loss": 1.418,
685
+ "step": 5300
686
+ },
687
+ {
688
+ "epoch": 0.84,
689
+ "learning_rate": 0.00022282585355378997,
690
+ "loss": 1.4056,
691
+ "step": 5350
692
+ },
693
+ {
694
+ "epoch": 0.85,
695
+ "learning_rate": 0.00022202061412926775,
696
+ "loss": 1.4351,
697
+ "step": 5400
698
+ },
699
+ {
700
+ "epoch": 0.85,
701
+ "learning_rate": 0.00022123147949323598,
702
+ "loss": 1.4377,
703
+ "step": 5450
704
+ },
705
+ {
706
+ "epoch": 0.86,
707
+ "learning_rate": 0.00022042624006871374,
708
+ "loss": 1.4065,
709
+ "step": 5500
710
+ },
711
+ {
712
+ "epoch": 0.87,
713
+ "learning_rate": 0.00021963710543268196,
714
+ "loss": 1.4246,
715
+ "step": 5550
716
+ },
717
+ {
718
+ "epoch": 0.88,
719
+ "learning_rate": 0.00021886407558514064,
720
+ "loss": 1.4607,
721
+ "step": 5600
722
+ },
723
+ {
724
+ "epoch": 0.89,
725
+ "learning_rate": 0.0002180588361606184,
726
+ "loss": 1.4211,
727
+ "step": 5650
728
+ },
729
+ {
730
+ "epoch": 0.89,
731
+ "learning_rate": 0.00021728580631307707,
732
+ "loss": 1.4475,
733
+ "step": 5700
734
+ },
735
+ {
736
+ "epoch": 0.9,
737
+ "learning_rate": 0.00021648056688855486,
738
+ "loss": 1.3977,
739
+ "step": 5750
740
+ },
741
+ {
742
+ "epoch": 0.91,
743
+ "learning_rate": 0.00021567532746403264,
744
+ "loss": 1.4034,
745
+ "step": 5800
746
+ },
747
+ {
748
+ "epoch": 0.92,
749
+ "learning_rate": 0.00021487008803951037,
750
+ "loss": 1.4237,
751
+ "step": 5850
752
+ },
753
+ {
754
+ "epoch": 0.93,
755
+ "learning_rate": 0.00021406484861498815,
756
+ "loss": 1.4371,
757
+ "step": 5900
758
+ },
759
+ {
760
+ "epoch": 0.93,
761
+ "learning_rate": 0.00021325960919046593,
762
+ "loss": 1.4416,
763
+ "step": 5950
764
+ },
765
+ {
766
+ "epoch": 0.94,
767
+ "learning_rate": 0.0002124704745544342,
768
+ "loss": 1.4164,
769
+ "step": 6000
770
+ },
771
+ {
772
+ "epoch": 0.94,
773
+ "eval_loss": 1.2173230648040771,
774
+ "eval_runtime": 95.0111,
775
+ "eval_samples_per_second": 119.27,
776
+ "eval_steps_per_second": 7.462,
777
+ "step": 6000
778
+ },
779
+ {
780
+ "epoch": 0.95,
781
+ "learning_rate": 0.00021166523512991192,
782
+ "loss": 1.397,
783
+ "step": 6050
784
+ },
785
+ {
786
+ "epoch": 0.96,
787
+ "learning_rate": 0.00021089220528237062,
788
+ "loss": 1.4268,
789
+ "step": 6100
790
+ },
791
+ {
792
+ "epoch": 0.96,
793
+ "learning_rate": 0.00021010307064633883,
794
+ "loss": 1.4388,
795
+ "step": 6150
796
+ },
797
+ {
798
+ "epoch": 0.97,
799
+ "learning_rate": 0.00020931393601030706,
800
+ "loss": 1.4208,
801
+ "step": 6200
802
+ },
803
+ {
804
+ "epoch": 0.98,
805
+ "learning_rate": 0.00020852480137427526,
806
+ "loss": 1.4352,
807
+ "step": 6250
808
+ },
809
+ {
810
+ "epoch": 0.99,
811
+ "learning_rate": 0.00020771956194975304,
812
+ "loss": 1.4053,
813
+ "step": 6300
814
+ },
815
+ {
816
+ "epoch": 1.0,
817
+ "learning_rate": 0.00020691432252523082,
818
+ "loss": 1.4242,
819
+ "step": 6350
820
+ },
821
+ {
822
+ "epoch": 1.0,
823
+ "learning_rate": 0.00020612518788919903,
824
+ "loss": 1.4197,
825
+ "step": 6400
826
+ },
827
+ {
828
+ "epoch": 1.01,
829
+ "learning_rate": 0.00020533605325316726,
830
+ "loss": 1.4225,
831
+ "step": 6450
832
+ },
833
+ {
834
+ "epoch": 1.02,
835
+ "learning_rate": 0.00020453081382864504,
836
+ "loss": 1.4188,
837
+ "step": 6500
838
+ },
839
+ {
840
+ "epoch": 1.03,
841
+ "learning_rate": 0.00020375778398110372,
842
+ "loss": 1.4347,
843
+ "step": 6550
844
+ },
845
+ {
846
+ "epoch": 1.04,
847
+ "learning_rate": 0.00020296864934507192,
848
+ "loss": 1.4371,
849
+ "step": 6600
850
+ },
851
+ {
852
+ "epoch": 1.04,
853
+ "learning_rate": 0.0002021634099205497,
854
+ "loss": 1.4228,
855
+ "step": 6650
856
+ },
857
+ {
858
+ "epoch": 1.05,
859
+ "learning_rate": 0.00020137427528451793,
860
+ "loss": 1.4289,
861
+ "step": 6700
862
+ },
863
+ {
864
+ "epoch": 1.06,
865
+ "learning_rate": 0.0002005690358599957,
866
+ "loss": 1.4224,
867
+ "step": 6750
868
+ },
869
+ {
870
+ "epoch": 1.07,
871
+ "learning_rate": 0.00019981211080094478,
872
+ "loss": 1.4783,
873
+ "step": 6800
874
+ },
875
+ {
876
+ "epoch": 1.07,
877
+ "learning_rate": 0.00019902297616491304,
878
+ "loss": 1.4469,
879
+ "step": 6850
880
+ },
881
+ {
882
+ "epoch": 1.08,
883
+ "learning_rate": 0.00019823384152888124,
884
+ "loss": 1.4335,
885
+ "step": 6900
886
+ },
887
+ {
888
+ "epoch": 1.09,
889
+ "learning_rate": 0.000197428602104359,
890
+ "loss": 1.3973,
891
+ "step": 6950
892
+ },
893
+ {
894
+ "epoch": 1.1,
895
+ "learning_rate": 0.0001966394674683272,
896
+ "loss": 1.4493,
897
+ "step": 7000
898
+ },
899
+ {
900
+ "epoch": 1.1,
901
+ "eval_loss": 1.210498571395874,
902
+ "eval_runtime": 95.0044,
903
+ "eval_samples_per_second": 119.279,
904
+ "eval_steps_per_second": 7.463,
905
+ "step": 7000
906
+ },
907
+ {
908
+ "epoch": 1.11,
909
+ "learning_rate": 0.00019583422804380499,
910
+ "loss": 1.4059,
911
+ "step": 7050
912
+ },
913
+ {
914
+ "epoch": 1.11,
915
+ "learning_rate": 0.00019502898861928277,
916
+ "loss": 1.3989,
917
+ "step": 7100
918
+ },
919
+ {
920
+ "epoch": 1.12,
921
+ "learning_rate": 0.00019422374919476055,
922
+ "loss": 1.3932,
923
+ "step": 7150
924
+ },
925
+ {
926
+ "epoch": 1.13,
927
+ "learning_rate": 0.00019341850977023833,
928
+ "loss": 1.4181,
929
+ "step": 7200
930
+ },
931
+ {
932
+ "epoch": 1.14,
933
+ "learning_rate": 0.000192645479922697,
934
+ "loss": 1.4567,
935
+ "step": 7250
936
+ },
937
+ {
938
+ "epoch": 1.14,
939
+ "learning_rate": 0.00019184024049817477,
940
+ "loss": 1.4207,
941
+ "step": 7300
942
+ },
943
+ {
944
+ "epoch": 1.15,
945
+ "learning_rate": 0.00019103500107365255,
946
+ "loss": 1.402,
947
+ "step": 7350
948
+ },
949
+ {
950
+ "epoch": 1.16,
951
+ "learning_rate": 0.00019022976164913033,
952
+ "loss": 1.4161,
953
+ "step": 7400
954
+ },
955
+ {
956
+ "epoch": 1.17,
957
+ "learning_rate": 0.00018944062701309854,
958
+ "loss": 1.4214,
959
+ "step": 7450
960
+ },
961
+ {
962
+ "epoch": 1.18,
963
+ "learning_rate": 0.00018863538758857632,
964
+ "loss": 1.4018,
965
+ "step": 7500
966
+ },
967
+ {
968
+ "epoch": 1.18,
969
+ "learning_rate": 0.0001878301481640541,
970
+ "loss": 1.3888,
971
+ "step": 7550
972
+ },
973
+ {
974
+ "epoch": 1.19,
975
+ "learning_rate": 0.0001870732231050032,
976
+ "loss": 1.4376,
977
+ "step": 7600
978
+ },
979
+ {
980
+ "epoch": 1.2,
981
+ "learning_rate": 0.00018628408846897143,
982
+ "loss": 1.4172,
983
+ "step": 7650
984
+ },
985
+ {
986
+ "epoch": 1.21,
987
+ "learning_rate": 0.0001854788490444492,
988
+ "loss": 1.4116,
989
+ "step": 7700
990
+ },
991
+ {
992
+ "epoch": 1.22,
993
+ "learning_rate": 0.0001846897144084174,
994
+ "loss": 1.4148,
995
+ "step": 7750
996
+ },
997
+ {
998
+ "epoch": 1.22,
999
+ "learning_rate": 0.00018390057977238564,
1000
+ "loss": 1.4197,
1001
+ "step": 7800
1002
+ },
1003
+ {
1004
+ "epoch": 1.23,
1005
+ "learning_rate": 0.00018311144513635385,
1006
+ "loss": 1.4202,
1007
+ "step": 7850
1008
+ },
1009
+ {
1010
+ "epoch": 1.24,
1011
+ "learning_rate": 0.00018230620571183163,
1012
+ "loss": 1.4046,
1013
+ "step": 7900
1014
+ },
1015
+ {
1016
+ "epoch": 1.25,
1017
+ "learning_rate": 0.0001815009662873094,
1018
+ "loss": 1.3885,
1019
+ "step": 7950
1020
+ },
1021
+ {
1022
+ "epoch": 1.25,
1023
+ "learning_rate": 0.00018071183165127761,
1024
+ "loss": 1.4116,
1025
+ "step": 8000
1026
+ },
1027
+ {
1028
+ "epoch": 1.25,
1029
+ "eval_loss": 1.2042211294174194,
1030
+ "eval_runtime": 95.1992,
1031
+ "eval_samples_per_second": 119.035,
1032
+ "eval_steps_per_second": 7.448,
1033
+ "step": 8000
1034
+ },
1035
+ {
1036
+ "epoch": 1.26,
1037
+ "learning_rate": 0.00017993880180373632,
1038
+ "loss": 1.4231,
1039
+ "step": 8050
1040
+ },
1041
+ {
1042
+ "epoch": 1.27,
1043
+ "learning_rate": 0.00017913356237921405,
1044
+ "loss": 1.3973,
1045
+ "step": 8100
1046
+ },
1047
+ {
1048
+ "epoch": 1.28,
1049
+ "learning_rate": 0.00017832832295469183,
1050
+ "loss": 1.4082,
1051
+ "step": 8150
1052
+ },
1053
+ {
1054
+ "epoch": 1.29,
1055
+ "learning_rate": 0.0001775230835301696,
1056
+ "loss": 1.4026,
1057
+ "step": 8200
1058
+ },
1059
+ {
1060
+ "epoch": 1.29,
1061
+ "learning_rate": 0.0001767500536826283,
1062
+ "loss": 1.4261,
1063
+ "step": 8250
1064
+ },
1065
+ {
1066
+ "epoch": 1.3,
1067
+ "learning_rate": 0.00017594481425810607,
1068
+ "loss": 1.4162,
1069
+ "step": 8300
1070
+ },
1071
+ {
1072
+ "epoch": 1.31,
1073
+ "learning_rate": 0.00017513957483358383,
1074
+ "loss": 1.4007,
1075
+ "step": 8350
1076
+ },
1077
+ {
1078
+ "epoch": 1.32,
1079
+ "learning_rate": 0.0001743343354090616,
1080
+ "loss": 1.4075,
1081
+ "step": 8400
1082
+ },
1083
+ {
1084
+ "epoch": 1.33,
1085
+ "learning_rate": 0.0001735290959845394,
1086
+ "loss": 1.3911,
1087
+ "step": 8450
1088
+ },
1089
+ {
1090
+ "epoch": 1.33,
1091
+ "learning_rate": 0.00017272385656001715,
1092
+ "loss": 1.3977,
1093
+ "step": 8500
1094
+ },
1095
+ {
1096
+ "epoch": 1.34,
1097
+ "learning_rate": 0.00017193472192398538,
1098
+ "loss": 1.4008,
1099
+ "step": 8550
1100
+ },
1101
+ {
1102
+ "epoch": 1.35,
1103
+ "learning_rate": 0.00017112948249946316,
1104
+ "loss": 1.3947,
1105
+ "step": 8600
1106
+ },
1107
+ {
1108
+ "epoch": 1.36,
1109
+ "learning_rate": 0.00017032424307494094,
1110
+ "loss": 1.3825,
1111
+ "step": 8650
1112
+ },
1113
+ {
1114
+ "epoch": 1.36,
1115
+ "learning_rate": 0.00016953510843890915,
1116
+ "loss": 1.4022,
1117
+ "step": 8700
1118
+ },
1119
+ {
1120
+ "epoch": 1.37,
1121
+ "learning_rate": 0.00016872986901438693,
1122
+ "loss": 1.3865,
1123
+ "step": 8750
1124
+ },
1125
+ {
1126
+ "epoch": 1.38,
1127
+ "learning_rate": 0.00016795683916684558,
1128
+ "loss": 1.435,
1129
+ "step": 8800
1130
+ },
1131
+ {
1132
+ "epoch": 1.39,
1133
+ "learning_rate": 0.00016716770453081384,
1134
+ "loss": 1.41,
1135
+ "step": 8850
1136
+ },
1137
+ {
1138
+ "epoch": 1.4,
1139
+ "learning_rate": 0.00016636246510629157,
1140
+ "loss": 1.3888,
1141
+ "step": 8900
1142
+ },
1143
+ {
1144
+ "epoch": 1.4,
1145
+ "learning_rate": 0.00016557333047025982,
1146
+ "loss": 1.4151,
1147
+ "step": 8950
1148
+ },
1149
+ {
1150
+ "epoch": 1.41,
1151
+ "learning_rate": 0.00016478419583422802,
1152
+ "loss": 1.3786,
1153
+ "step": 9000
1154
+ },
1155
+ {
1156
+ "epoch": 1.41,
1157
+ "eval_loss": 1.1985399723052979,
1158
+ "eval_runtime": 94.774,
1159
+ "eval_samples_per_second": 119.569,
1160
+ "eval_steps_per_second": 7.481,
1161
+ "step": 9000
1162
+ },
1163
+ {
1164
+ "epoch": 1.42,
1165
+ "learning_rate": 0.00016399506119819625,
1166
+ "loss": 1.3709,
1167
+ "step": 9050
1168
+ },
1169
+ {
1170
+ "epoch": 1.43,
1171
+ "learning_rate": 0.00016318982177367404,
1172
+ "loss": 1.4021,
1173
+ "step": 9100
1174
+ },
1175
+ {
1176
+ "epoch": 1.43,
1177
+ "learning_rate": 0.00016238458234915182,
1178
+ "loss": 1.4054,
1179
+ "step": 9150
1180
+ },
1181
+ {
1182
+ "epoch": 1.44,
1183
+ "learning_rate": 0.00016157934292462955,
1184
+ "loss": 1.3909,
1185
+ "step": 9200
1186
+ },
1187
+ {
1188
+ "epoch": 1.45,
1189
+ "learning_rate": 0.0001607902082885978,
1190
+ "loss": 1.3949,
1191
+ "step": 9250
1192
+ },
1193
+ {
1194
+ "epoch": 1.46,
1195
+ "learning_rate": 0.000160001073652566,
1196
+ "loss": 1.3927,
1197
+ "step": 9300
1198
+ },
1199
+ {
1200
+ "epoch": 1.47,
1201
+ "learning_rate": 0.0001591958342280438,
1202
+ "loss": 1.4053,
1203
+ "step": 9350
1204
+ },
1205
+ {
1206
+ "epoch": 1.47,
1207
+ "learning_rate": 0.00015842280438050244,
1208
+ "loss": 1.4217,
1209
+ "step": 9400
1210
+ },
1211
+ {
1212
+ "epoch": 1.48,
1213
+ "learning_rate": 0.0001576497745329611,
1214
+ "loss": 1.4174,
1215
+ "step": 9450
1216
+ },
1217
+ {
1218
+ "epoch": 1.49,
1219
+ "learning_rate": 0.00015686063989692935,
1220
+ "loss": 1.4396,
1221
+ "step": 9500
1222
+ },
1223
+ {
1224
+ "epoch": 1.5,
1225
+ "learning_rate": 0.00015605540047240713,
1226
+ "loss": 1.3969,
1227
+ "step": 9550
1228
+ },
1229
+ {
1230
+ "epoch": 1.51,
1231
+ "learning_rate": 0.0001552501610478849,
1232
+ "loss": 1.3905,
1233
+ "step": 9600
1234
+ },
1235
+ {
1236
+ "epoch": 1.51,
1237
+ "learning_rate": 0.0001544449216233627,
1238
+ "loss": 1.3712,
1239
+ "step": 9650
1240
+ },
1241
+ {
1242
+ "epoch": 1.52,
1243
+ "learning_rate": 0.00015363968219884042,
1244
+ "loss": 1.3787,
1245
+ "step": 9700
1246
+ },
1247
+ {
1248
+ "epoch": 1.53,
1249
+ "learning_rate": 0.0001528344427743182,
1250
+ "loss": 1.3795,
1251
+ "step": 9750
1252
+ },
1253
+ {
1254
+ "epoch": 1.54,
1255
+ "learning_rate": 0.00015207751771526733,
1256
+ "loss": 1.4115,
1257
+ "step": 9800
1258
+ },
1259
+ {
1260
+ "epoch": 1.54,
1261
+ "learning_rate": 0.00015128838307923553,
1262
+ "loss": 1.3968,
1263
+ "step": 9850
1264
+ },
1265
+ {
1266
+ "epoch": 1.55,
1267
+ "learning_rate": 0.0001505153532316942,
1268
+ "loss": 1.4296,
1269
+ "step": 9900
1270
+ },
1271
+ {
1272
+ "epoch": 1.56,
1273
+ "learning_rate": 0.00014975842817264334,
1274
+ "loss": 1.3983,
1275
+ "step": 9950
1276
+ },
1277
+ {
1278
+ "epoch": 1.57,
1279
+ "learning_rate": 0.0001489531887481211,
1280
+ "loss": 1.3813,
1281
+ "step": 10000
1282
+ },
1283
+ {
1284
+ "epoch": 1.57,
1285
+ "eval_loss": 1.1934435367584229,
1286
+ "eval_runtime": 95.1956,
1287
+ "eval_samples_per_second": 119.039,
1288
+ "eval_steps_per_second": 7.448,
1289
+ "step": 10000
1290
+ },
1291
+ {
1292
+ "epoch": 1.58,
1293
+ "learning_rate": 0.00014814794932359887,
1294
+ "loss": 1.3868,
1295
+ "step": 10050
1296
+ },
1297
+ {
1298
+ "epoch": 1.58,
1299
+ "learning_rate": 0.00014737491947605752,
1300
+ "loss": 1.4145,
1301
+ "step": 10100
1302
+ },
1303
+ {
1304
+ "epoch": 1.59,
1305
+ "learning_rate": 0.00014658578484002575,
1306
+ "loss": 1.3916,
1307
+ "step": 10150
1308
+ },
1309
+ {
1310
+ "epoch": 1.6,
1311
+ "learning_rate": 0.00014578054541550354,
1312
+ "loss": 1.3796,
1313
+ "step": 10200
1314
+ },
1315
+ {
1316
+ "epoch": 1.61,
1317
+ "learning_rate": 0.00014499141077947174,
1318
+ "loss": 1.4049,
1319
+ "step": 10250
1320
+ },
1321
+ {
1322
+ "epoch": 1.62,
1323
+ "learning_rate": 0.00014420227614343997,
1324
+ "loss": 1.3931,
1325
+ "step": 10300
1326
+ },
1327
+ {
1328
+ "epoch": 1.62,
1329
+ "learning_rate": 0.00014339703671891775,
1330
+ "loss": 1.3685,
1331
+ "step": 10350
1332
+ },
1333
+ {
1334
+ "epoch": 1.63,
1335
+ "learning_rate": 0.0001425917972943955,
1336
+ "loss": 1.3856,
1337
+ "step": 10400
1338
+ },
1339
+ {
1340
+ "epoch": 1.64,
1341
+ "learning_rate": 0.00014180266265836374,
1342
+ "loss": 1.3871,
1343
+ "step": 10450
1344
+ },
1345
+ {
1346
+ "epoch": 1.65,
1347
+ "learning_rate": 0.00014099742323384152,
1348
+ "loss": 1.3822,
1349
+ "step": 10500
1350
+ },
1351
+ {
1352
+ "epoch": 1.65,
1353
+ "learning_rate": 0.0001401921838093193,
1354
+ "loss": 1.3909,
1355
+ "step": 10550
1356
+ },
1357
+ {
1358
+ "epoch": 1.66,
1359
+ "learning_rate": 0.0001394030491732875,
1360
+ "loss": 1.3876,
1361
+ "step": 10600
1362
+ },
1363
+ {
1364
+ "epoch": 1.67,
1365
+ "learning_rate": 0.0001385978097487653,
1366
+ "loss": 1.3611,
1367
+ "step": 10650
1368
+ },
1369
+ {
1370
+ "epoch": 1.68,
1371
+ "learning_rate": 0.0001378086751127335,
1372
+ "loss": 1.3871,
1373
+ "step": 10700
1374
+ },
1375
+ {
1376
+ "epoch": 1.69,
1377
+ "learning_rate": 0.00013700343568821127,
1378
+ "loss": 1.3808,
1379
+ "step": 10750
1380
+ },
1381
+ {
1382
+ "epoch": 1.69,
1383
+ "learning_rate": 0.00013619819626368906,
1384
+ "loss": 1.3733,
1385
+ "step": 10800
1386
+ },
1387
+ {
1388
+ "epoch": 1.7,
1389
+ "learning_rate": 0.00013539295683916684,
1390
+ "loss": 1.3835,
1391
+ "step": 10850
1392
+ },
1393
+ {
1394
+ "epoch": 1.71,
1395
+ "learning_rate": 0.00013460382220313504,
1396
+ "loss": 1.3768,
1397
+ "step": 10900
1398
+ },
1399
+ {
1400
+ "epoch": 1.72,
1401
+ "learning_rate": 0.00013379858277861282,
1402
+ "loss": 1.3826,
1403
+ "step": 10950
1404
+ },
1405
+ {
1406
+ "epoch": 1.73,
1407
+ "learning_rate": 0.0001329933433540906,
1408
+ "loss": 1.3699,
1409
+ "step": 11000
1410
+ },
1411
+ {
1412
+ "epoch": 1.73,
1413
+ "eval_loss": 1.1888667345046997,
1414
+ "eval_runtime": 94.9678,
1415
+ "eval_samples_per_second": 119.325,
1416
+ "eval_steps_per_second": 7.466,
1417
+ "step": 11000
1418
+ },
1419
+ {
1420
+ "epoch": 1.73,
1421
+ "learning_rate": 0.00013218810392956836,
1422
+ "loss": 1.3872,
1423
+ "step": 11050
1424
+ },
1425
+ {
1426
+ "epoch": 1.74,
1427
+ "learning_rate": 0.0001313989692935366,
1428
+ "loss": 1.3747,
1429
+ "step": 11100
1430
+ },
1431
+ {
1432
+ "epoch": 1.75,
1433
+ "learning_rate": 0.00013059372986901438,
1434
+ "loss": 1.3827,
1435
+ "step": 11150
1436
+ },
1437
+ {
1438
+ "epoch": 1.76,
1439
+ "learning_rate": 0.0001298368048099635,
1440
+ "loss": 1.4229,
1441
+ "step": 11200
1442
+ },
1443
+ {
1444
+ "epoch": 1.76,
1445
+ "learning_rate": 0.00012903156538544126,
1446
+ "loss": 1.3915,
1447
+ "step": 11250
1448
+ },
1449
+ {
1450
+ "epoch": 1.77,
1451
+ "learning_rate": 0.00012822632596091904,
1452
+ "loss": 1.388,
1453
+ "step": 11300
1454
+ },
1455
+ {
1456
+ "epoch": 1.78,
1457
+ "learning_rate": 0.00012743719132488727,
1458
+ "loss": 1.3952,
1459
+ "step": 11350
1460
+ },
1461
+ {
1462
+ "epoch": 1.79,
1463
+ "learning_rate": 0.00012664805668885547,
1464
+ "loss": 1.3712,
1465
+ "step": 11400
1466
+ },
1467
+ {
1468
+ "epoch": 1.8,
1469
+ "learning_rate": 0.0001258589220528237,
1470
+ "loss": 1.3949,
1471
+ "step": 11450
1472
+ },
1473
+ {
1474
+ "epoch": 1.8,
1475
+ "learning_rate": 0.00012505368262830148,
1476
+ "loss": 1.3744,
1477
+ "step": 11500
1478
+ },
1479
+ {
1480
+ "epoch": 1.81,
1481
+ "learning_rate": 0.00012424844320377924,
1482
+ "loss": 1.3609,
1483
+ "step": 11550
1484
+ },
1485
+ {
1486
+ "epoch": 1.82,
1487
+ "learning_rate": 0.00012344320377925702,
1488
+ "loss": 1.3655,
1489
+ "step": 11600
1490
+ },
1491
+ {
1492
+ "epoch": 1.83,
1493
+ "learning_rate": 0.0001226379643547348,
1494
+ "loss": 1.3702,
1495
+ "step": 11650
1496
+ },
1497
+ {
1498
+ "epoch": 1.83,
1499
+ "learning_rate": 0.00012184882971870302,
1500
+ "loss": 1.3929,
1501
+ "step": 11700
1502
+ },
1503
+ {
1504
+ "epoch": 1.84,
1505
+ "learning_rate": 0.00012104359029418079,
1506
+ "loss": 1.3611,
1507
+ "step": 11750
1508
+ },
1509
+ {
1510
+ "epoch": 1.85,
1511
+ "learning_rate": 0.00012023835086965857,
1512
+ "loss": 1.37,
1513
+ "step": 11800
1514
+ },
1515
+ {
1516
+ "epoch": 1.86,
1517
+ "learning_rate": 0.00011946532102211722,
1518
+ "loss": 1.4018,
1519
+ "step": 11850
1520
+ },
1521
+ {
1522
+ "epoch": 1.87,
1523
+ "learning_rate": 0.000118660081597595,
1524
+ "loss": 1.3757,
1525
+ "step": 11900
1526
+ },
1527
+ {
1528
+ "epoch": 1.87,
1529
+ "learning_rate": 0.00011788705175005367,
1530
+ "loss": 1.3949,
1531
+ "step": 11950
1532
+ },
1533
+ {
1534
+ "epoch": 1.88,
1535
+ "learning_rate": 0.00011708181232553145,
1536
+ "loss": 1.3671,
1537
+ "step": 12000
1538
+ },
1539
+ {
1540
+ "epoch": 1.88,
1541
+ "eval_loss": 1.1848528385162354,
1542
+ "eval_runtime": 94.7376,
1543
+ "eval_samples_per_second": 119.615,
1544
+ "eval_steps_per_second": 7.484,
1545
+ "step": 12000
1546
+ },
1547
+ {
1548
+ "epoch": 1.89,
1549
+ "learning_rate": 0.00011627657290100923,
1550
+ "loss": 1.3686,
1551
+ "step": 12050
1552
+ },
1553
+ {
1554
+ "epoch": 1.9,
1555
+ "learning_rate": 0.00011547133347648699,
1556
+ "loss": 1.3721,
1557
+ "step": 12100
1558
+ },
1559
+ {
1560
+ "epoch": 1.91,
1561
+ "learning_rate": 0.00011466609405196477,
1562
+ "loss": 1.3638,
1563
+ "step": 12150
1564
+ },
1565
+ {
1566
+ "epoch": 1.91,
1567
+ "learning_rate": 0.00011386085462744256,
1568
+ "loss": 1.375,
1569
+ "step": 12200
1570
+ },
1571
+ {
1572
+ "epoch": 1.92,
1573
+ "learning_rate": 0.00011305561520292033,
1574
+ "loss": 1.3774,
1575
+ "step": 12250
1576
+ },
1577
+ {
1578
+ "epoch": 1.93,
1579
+ "learning_rate": 0.00011226648056688854,
1580
+ "loss": 1.3897,
1581
+ "step": 12300
1582
+ },
1583
+ {
1584
+ "epoch": 1.94,
1585
+ "learning_rate": 0.00011146124114236632,
1586
+ "loss": 1.369,
1587
+ "step": 12350
1588
+ },
1589
+ {
1590
+ "epoch": 1.94,
1591
+ "learning_rate": 0.00011089757354520076,
1592
+ "loss": 1.8621,
1593
+ "step": 12400
1594
+ },
1595
+ {
1596
+ "epoch": 1.95,
1597
+ "learning_rate": 0.00011089757354520076,
1598
+ "loss": 0.0,
1599
+ "step": 12450
1600
+ },
1601
+ {
1602
+ "epoch": 1.96,
1603
+ "learning_rate": 0.00011089757354520076,
1604
+ "loss": 0.0,
1605
+ "step": 12500
1606
+ },
1607
+ {
1608
+ "epoch": 1.97,
1609
+ "learning_rate": 0.00011089757354520076,
1610
+ "loss": 0.0,
1611
+ "step": 12550
1612
+ },
1613
+ {
1614
+ "epoch": 1.98,
1615
+ "learning_rate": 0.00011089757354520076,
1616
+ "loss": 0.0,
1617
+ "step": 12600
1618
+ },
1619
+ {
1620
+ "epoch": 1.98,
1621
+ "learning_rate": 0.00011089757354520076,
1622
+ "loss": 0.0,
1623
+ "step": 12650
1624
+ },
1625
+ {
1626
+ "epoch": 1.99,
1627
+ "learning_rate": 0.00011089757354520076,
1628
+ "loss": 0.0,
1629
+ "step": 12700
1630
+ },
1631
+ {
1632
+ "epoch": 2.0,
1633
+ "learning_rate": 0.00011089757354520076,
1634
+ "loss": 0.0,
1635
+ "step": 12750
1636
+ },
1637
+ {
1638
+ "epoch": 2.01,
1639
+ "learning_rate": 0.00011089757354520076,
1640
+ "loss": 0.0,
1641
+ "step": 12800
1642
+ },
1643
+ {
1644
+ "epoch": 2.02,
1645
+ "learning_rate": 0.00011089757354520076,
1646
+ "loss": 0.0,
1647
+ "step": 12850
1648
+ },
1649
+ {
1650
+ "epoch": 2.02,
1651
+ "learning_rate": 0.00011089757354520076,
1652
+ "loss": 0.0,
1653
+ "step": 12900
1654
+ },
1655
+ {
1656
+ "epoch": 2.03,
1657
+ "learning_rate": 0.00011089757354520076,
1658
+ "loss": 0.0,
1659
+ "step": 12950
1660
+ },
1661
+ {
1662
+ "epoch": 2.04,
1663
+ "learning_rate": 0.00011089757354520076,
1664
+ "loss": 0.0,
1665
+ "step": 13000
1666
+ },
1667
+ {
1668
+ "epoch": 2.04,
1669
+ "eval_loss": NaN,
1670
+ "eval_runtime": 93.4731,
1671
+ "eval_samples_per_second": 121.233,
1672
+ "eval_steps_per_second": 7.585,
1673
+ "step": 13000
1674
+ },
1675
+ {
1676
+ "epoch": 2.05,
1677
+ "learning_rate": 0.00011089757354520076,
1678
+ "loss": 0.0,
1679
+ "step": 13050
1680
+ },
1681
+ {
1682
+ "epoch": 2.05,
1683
+ "learning_rate": 0.00011089757354520076,
1684
+ "loss": 0.0,
1685
+ "step": 13100
1686
+ },
1687
+ {
1688
+ "epoch": 2.06,
1689
+ "learning_rate": 0.00011089757354520076,
1690
+ "loss": 0.0,
1691
+ "step": 13150
1692
+ },
1693
+ {
1694
+ "epoch": 2.07,
1695
+ "learning_rate": 0.00011089757354520076,
1696
+ "loss": 0.0,
1697
+ "step": 13200
1698
+ },
1699
+ {
1700
+ "epoch": 2.08,
1701
+ "learning_rate": 0.00011089757354520076,
1702
+ "loss": 0.0,
1703
+ "step": 13250
1704
+ },
1705
+ {
1706
+ "epoch": 2.09,
1707
+ "learning_rate": 0.00011089757354520076,
1708
+ "loss": 0.0,
1709
+ "step": 13300
1710
+ },
1711
+ {
1712
+ "epoch": 2.09,
1713
+ "learning_rate": 0.00011089757354520076,
1714
+ "loss": 0.0,
1715
+ "step": 13350
1716
+ },
1717
+ {
1718
+ "epoch": 2.1,
1719
+ "learning_rate": 0.00011089757354520076,
1720
+ "loss": 0.0,
1721
+ "step": 13400
1722
+ },
1723
+ {
1724
+ "epoch": 2.11,
1725
+ "learning_rate": 0.00011089757354520076,
1726
+ "loss": 0.0,
1727
+ "step": 13450
1728
+ },
1729
+ {
1730
+ "epoch": 2.12,
1731
+ "learning_rate": 0.00011089757354520076,
1732
+ "loss": 0.0,
1733
+ "step": 13500
1734
+ },
1735
+ {
1736
+ "epoch": 2.12,
1737
+ "learning_rate": 0.00011089757354520076,
1738
+ "loss": 0.0,
1739
+ "step": 13550
1740
+ },
1741
+ {
1742
+ "epoch": 2.13,
1743
+ "learning_rate": 0.00011089757354520076,
1744
+ "loss": 0.0,
1745
+ "step": 13600
1746
+ },
1747
+ {
1748
+ "epoch": 2.14,
1749
+ "learning_rate": 0.00011089757354520076,
1750
+ "loss": 0.0,
1751
+ "step": 13650
1752
+ },
1753
+ {
1754
+ "epoch": 2.15,
1755
+ "learning_rate": 0.00011089757354520076,
1756
+ "loss": 0.0,
1757
+ "step": 13700
1758
+ },
1759
+ {
1760
+ "epoch": 2.16,
1761
+ "learning_rate": 0.00011089757354520076,
1762
+ "loss": 0.0,
1763
+ "step": 13750
1764
+ },
1765
+ {
1766
+ "epoch": 2.16,
1767
+ "learning_rate": 0.00011089757354520076,
1768
+ "loss": 0.0,
1769
+ "step": 13800
1770
+ },
1771
+ {
1772
+ "epoch": 2.17,
1773
+ "learning_rate": 0.00011089757354520076,
1774
+ "loss": 0.0,
1775
+ "step": 13850
1776
+ },
1777
+ {
1778
+ "epoch": 2.18,
1779
+ "learning_rate": 0.00011089757354520076,
1780
+ "loss": 0.0,
1781
+ "step": 13900
1782
+ },
1783
+ {
1784
+ "epoch": 2.19,
1785
+ "learning_rate": 0.00011089757354520076,
1786
+ "loss": 0.0,
1787
+ "step": 13950
1788
+ },
1789
+ {
1790
+ "epoch": 2.2,
1791
+ "learning_rate": 0.00011089757354520076,
1792
+ "loss": 0.0,
1793
+ "step": 14000
1794
+ },
1795
+ {
1796
+ "epoch": 2.2,
1797
+ "eval_loss": NaN,
1798
+ "eval_runtime": 93.4623,
1799
+ "eval_samples_per_second": 121.247,
1800
+ "eval_steps_per_second": 7.586,
1801
+ "step": 14000
1802
+ },
1803
+ {
1804
+ "epoch": 2.2,
1805
+ "learning_rate": 0.00011089757354520076,
1806
+ "loss": 0.0,
1807
+ "step": 14050
1808
+ },
1809
+ {
1810
+ "epoch": 2.21,
1811
+ "learning_rate": 0.00011089757354520076,
1812
+ "loss": 0.0,
1813
+ "step": 14100
1814
+ },
1815
+ {
1816
+ "epoch": 2.22,
1817
+ "learning_rate": 0.00011089757354520076,
1818
+ "loss": 0.0,
1819
+ "step": 14150
1820
+ },
1821
+ {
1822
+ "epoch": 2.23,
1823
+ "learning_rate": 0.00011089757354520076,
1824
+ "loss": 0.0,
1825
+ "step": 14200
1826
+ },
1827
+ {
1828
+ "epoch": 2.23,
1829
+ "learning_rate": 0.00011089757354520076,
1830
+ "loss": 0.0,
1831
+ "step": 14250
1832
+ },
1833
+ {
1834
+ "epoch": 2.24,
1835
+ "learning_rate": 0.00011089757354520076,
1836
+ "loss": 0.0,
1837
+ "step": 14300
1838
+ },
1839
+ {
1840
+ "epoch": 2.25,
1841
+ "learning_rate": 0.00011089757354520076,
1842
+ "loss": 0.0,
1843
+ "step": 14350
1844
+ },
1845
+ {
1846
+ "epoch": 2.26,
1847
+ "learning_rate": 0.00011089757354520076,
1848
+ "loss": 0.0,
1849
+ "step": 14400
1850
+ },
1851
+ {
1852
+ "epoch": 2.27,
1853
+ "learning_rate": 0.00011089757354520076,
1854
+ "loss": 0.0,
1855
+ "step": 14450
1856
+ },
1857
+ {
1858
+ "epoch": 2.27,
1859
+ "learning_rate": 0.00011089757354520076,
1860
+ "loss": 0.0,
1861
+ "step": 14500
1862
+ },
1863
+ {
1864
+ "epoch": 2.28,
1865
+ "learning_rate": 0.00011089757354520076,
1866
+ "loss": 0.0,
1867
+ "step": 14550
1868
+ },
1869
+ {
1870
+ "epoch": 2.29,
1871
+ "learning_rate": 0.00011089757354520076,
1872
+ "loss": 0.0,
1873
+ "step": 14600
1874
+ },
1875
+ {
1876
+ "epoch": 2.3,
1877
+ "learning_rate": 0.00011089757354520076,
1878
+ "loss": 0.0,
1879
+ "step": 14650
1880
+ },
1881
+ {
1882
+ "epoch": 2.31,
1883
+ "learning_rate": 0.00011089757354520076,
1884
+ "loss": 0.0,
1885
+ "step": 14700
1886
+ },
1887
+ {
1888
+ "epoch": 2.31,
1889
+ "learning_rate": 0.00011089757354520076,
1890
+ "loss": 0.0,
1891
+ "step": 14750
1892
+ },
1893
+ {
1894
+ "epoch": 2.32,
1895
+ "learning_rate": 0.00011089757354520076,
1896
+ "loss": 0.0,
1897
+ "step": 14800
1898
+ },
1899
+ {
1900
+ "epoch": 2.33,
1901
+ "learning_rate": 0.00011089757354520076,
1902
+ "loss": 0.0,
1903
+ "step": 14850
1904
+ },
1905
+ {
1906
+ "epoch": 2.34,
1907
+ "learning_rate": 0.00011089757354520076,
1908
+ "loss": 0.0,
1909
+ "step": 14900
1910
+ },
1911
+ {
1912
+ "epoch": 2.34,
1913
+ "learning_rate": 0.00011089757354520076,
1914
+ "loss": 0.0,
1915
+ "step": 14950
1916
+ },
1917
+ {
1918
+ "epoch": 2.35,
1919
+ "learning_rate": 0.00011089757354520076,
1920
+ "loss": 0.0,
1921
+ "step": 15000
1922
+ },
1923
+ {
1924
+ "epoch": 2.35,
1925
+ "eval_loss": NaN,
1926
+ "eval_runtime": 93.4289,
1927
+ "eval_samples_per_second": 121.29,
1928
+ "eval_steps_per_second": 7.589,
1929
+ "step": 15000
1930
+ },
1931
+ {
1932
+ "epoch": 2.36,
1933
+ "learning_rate": 0.00011089757354520076,
1934
+ "loss": 0.0,
1935
+ "step": 15050
1936
+ },
1937
+ {
1938
+ "epoch": 2.37,
1939
+ "learning_rate": 0.00011089757354520076,
1940
+ "loss": 0.0,
1941
+ "step": 15100
1942
+ },
1943
+ {
1944
+ "epoch": 2.38,
1945
+ "learning_rate": 0.00011089757354520076,
1946
+ "loss": 0.0,
1947
+ "step": 15150
1948
+ },
1949
+ {
1950
+ "epoch": 2.38,
1951
+ "learning_rate": 0.00011089757354520076,
1952
+ "loss": 0.0,
1953
+ "step": 15200
1954
+ },
1955
+ {
1956
+ "epoch": 2.39,
1957
+ "learning_rate": 0.00011089757354520076,
1958
+ "loss": 0.0,
1959
+ "step": 15250
1960
+ },
1961
+ {
1962
+ "epoch": 2.4,
1963
+ "learning_rate": 0.00011089757354520076,
1964
+ "loss": 0.0,
1965
+ "step": 15300
1966
+ },
1967
+ {
1968
+ "epoch": 2.41,
1969
+ "learning_rate": 0.00011089757354520076,
1970
+ "loss": 0.0,
1971
+ "step": 15350
1972
+ },
1973
+ {
1974
+ "epoch": 2.42,
1975
+ "learning_rate": 0.00011089757354520076,
1976
+ "loss": 0.0,
1977
+ "step": 15400
1978
+ },
1979
+ {
1980
+ "epoch": 2.42,
1981
+ "learning_rate": 0.00011089757354520076,
1982
+ "loss": 0.0,
1983
+ "step": 15450
1984
+ },
1985
+ {
1986
+ "epoch": 2.43,
1987
+ "learning_rate": 0.00011089757354520076,
1988
+ "loss": 0.0,
1989
+ "step": 15500
1990
+ },
1991
+ {
1992
+ "epoch": 2.44,
1993
+ "learning_rate": 0.00011089757354520076,
1994
+ "loss": 0.0,
1995
+ "step": 15550
1996
+ },
1997
+ {
1998
+ "epoch": 2.45,
1999
+ "learning_rate": 0.00011089757354520076,
2000
+ "loss": 0.0,
2001
+ "step": 15600
2002
+ },
2003
+ {
2004
+ "epoch": 2.45,
2005
+ "learning_rate": 0.00011089757354520076,
2006
+ "loss": 0.0,
2007
+ "step": 15650
2008
+ },
2009
+ {
2010
+ "epoch": 2.46,
2011
+ "learning_rate": 0.00011089757354520076,
2012
+ "loss": 0.0,
2013
+ "step": 15700
2014
+ },
2015
+ {
2016
+ "epoch": 2.47,
2017
+ "learning_rate": 0.00011089757354520076,
2018
+ "loss": 0.0,
2019
+ "step": 15750
2020
+ },
2021
+ {
2022
+ "epoch": 2.48,
2023
+ "learning_rate": 0.00011089757354520076,
2024
+ "loss": 0.0,
2025
+ "step": 15800
2026
+ },
2027
+ {
2028
+ "epoch": 2.49,
2029
+ "learning_rate": 0.00011089757354520076,
2030
+ "loss": 0.0,
2031
+ "step": 15850
2032
+ },
2033
+ {
2034
+ "epoch": 2.49,
2035
+ "learning_rate": 0.00011089757354520076,
2036
+ "loss": 0.0,
2037
+ "step": 15900
2038
+ },
2039
+ {
2040
+ "epoch": 2.5,
2041
+ "learning_rate": 0.00011089757354520076,
2042
+ "loss": 0.0,
2043
+ "step": 15950
2044
+ },
2045
+ {
2046
+ "epoch": 2.51,
2047
+ "learning_rate": 0.00011089757354520076,
2048
+ "loss": 0.0,
2049
+ "step": 16000
2050
+ },
2051
+ {
2052
+ "epoch": 2.51,
2053
+ "eval_loss": NaN,
2054
+ "eval_runtime": 93.441,
2055
+ "eval_samples_per_second": 121.274,
2056
+ "eval_steps_per_second": 7.588,
2057
+ "step": 16000
2058
+ }
2059
+ ],
2060
+ "logging_steps": 50,
2061
+ "max_steps": 19128,
2062
+ "num_input_tokens_seen": 0,
2063
+ "num_train_epochs": 3,
2064
+ "save_steps": 1000,
2065
+ "total_flos": 3.1456589241227674e+17,
2066
+ "train_batch_size": 16,
2067
+ "trial_name": null,
2068
+ "trial_params": null
2069
+ }
checkpoint-16000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:020399f67c678641c05351df778629bde428b25cc882f50dae492e08cb9604ee
3
+ size 5073
checkpoint-16000/training_metrics.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "step": 16000,
3
+ "epoch": 2.5092135183878304,
4
+ "best_eval_loss": 0.5003042221069336,
5
+ "checkpoint_number": 16,
6
+ "recent_metrics": [
7
+ {
8
+ "step": 15600,
9
+ "epoch": 2.45,
10
+ "loss": 0.0,
11
+ "learning_rate": 0.00011089757354520076,
12
+ "gpu_memory_gb": 0.8661794662475586,
13
+ "system_memory_percent": 4.5
14
+ },
15
+ {
16
+ "step": 15650,
17
+ "epoch": 2.45,
18
+ "loss": 0.0,
19
+ "learning_rate": 0.00011089757354520076,
20
+ "gpu_memory_gb": 0.8661794662475586,
21
+ "system_memory_percent": 4.6
22
+ },
23
+ {
24
+ "step": 15700,
25
+ "epoch": 2.46,
26
+ "loss": 0.0,
27
+ "learning_rate": 0.00011089757354520076,
28
+ "gpu_memory_gb": 0.8661794662475586,
29
+ "system_memory_percent": 4.5
30
+ },
31
+ {
32
+ "step": 15750,
33
+ "epoch": 2.47,
34
+ "loss": 0.0,
35
+ "learning_rate": 0.00011089757354520076,
36
+ "gpu_memory_gb": 0.8661794662475586,
37
+ "system_memory_percent": 4.5
38
+ },
39
+ {
40
+ "step": 15800,
41
+ "epoch": 2.48,
42
+ "loss": 0.0,
43
+ "learning_rate": 0.00011089757354520076,
44
+ "gpu_memory_gb": 0.8661794662475586,
45
+ "system_memory_percent": 4.5
46
+ },
47
+ {
48
+ "step": 15850,
49
+ "epoch": 2.49,
50
+ "loss": 0.0,
51
+ "learning_rate": 0.00011089757354520076,
52
+ "gpu_memory_gb": 0.8661794662475586,
53
+ "system_memory_percent": 4.5
54
+ },
55
+ {
56
+ "step": 15900,
57
+ "epoch": 2.49,
58
+ "loss": 0.0,
59
+ "learning_rate": 0.00011089757354520076,
60
+ "gpu_memory_gb": 0.8661794662475586,
61
+ "system_memory_percent": 4.5
62
+ },
63
+ {
64
+ "step": 15950,
65
+ "epoch": 2.5,
66
+ "loss": 0.0,
67
+ "learning_rate": 0.00011089757354520076,
68
+ "gpu_memory_gb": 0.8661794662475586,
69
+ "system_memory_percent": 4.5
70
+ },
71
+ {
72
+ "step": 16000,
73
+ "epoch": 2.51,
74
+ "loss": 0.0,
75
+ "learning_rate": 0.00011089757354520076,
76
+ "gpu_memory_gb": 0.8661794662475586,
77
+ "system_memory_percent": 4.5
78
+ },
79
+ {
80
+ "step": 16000,
81
+ "epoch": 2.51,
82
+ "eval_loss": NaN,
83
+ "eval_runtime": 93.441,
84
+ "eval_samples_per_second": 121.274,
85
+ "eval_steps_per_second": 7.588,
86
+ "gpu_memory_gb": 0.8661794662475586,
87
+ "system_memory_percent": 4.5
88
+ }
89
+ ]
90
+ }