ranjan56cse commited on
Commit
caa00ac
·
verified ·
1 Parent(s): 8350c0d

Checkpoint 3 at step 3000

Browse files
checkpoint-3000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google-t5/t5-base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.0
checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google-t5/t5-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 16,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v",
23
+ "q"
24
+ ],
25
+ "task_type": "SEQ_2_SEQ_LM"
26
+ }
checkpoint-3000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1800d7755dad7cc3e40c3741acc7b918a441c2d1dfea31a6e56efcf4081a094
3
+ size 7098016
checkpoint-3000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74c2469bbe7f45a52b3e15a7bd4b6235ed1cad3192602010536a3ae43528459b
3
+ size 14277259
checkpoint-3000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b77e06d9e8a9ec437ce19bad2fcf9c3fc37002aceb56c45b0d6882f78fb7fc88
3
+ size 14645
checkpoint-3000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:991fcba719acec99b5539d96fcc576240d1d3bb15cabef2962124555f60c56e9
3
+ size 1465
checkpoint-3000/trainer_state.json ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.5003042221069336,
3
+ "best_model_checkpoint": "./t5_checkpoints_full/checkpoint-1000",
4
+ "epoch": 0.4704775346977182,
5
+ "eval_steps": 1000,
6
+ "global_step": 3000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2.88e-05,
14
+ "loss": 12.5022,
15
+ "step": 50
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 5.82e-05,
20
+ "loss": 10.3469,
21
+ "step": 100
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 8.819999999999999e-05,
26
+ "loss": 4.02,
27
+ "step": 150
28
+ },
29
+ {
30
+ "epoch": 0.03,
31
+ "learning_rate": 0.0001182,
32
+ "loss": 0.9201,
33
+ "step": 200
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "learning_rate": 0.0001482,
38
+ "loss": 0.7357,
39
+ "step": 250
40
+ },
41
+ {
42
+ "epoch": 0.05,
43
+ "learning_rate": 0.00017699999999999997,
44
+ "loss": 0.6602,
45
+ "step": 300
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "learning_rate": 0.00020699999999999996,
50
+ "loss": 0.6121,
51
+ "step": 350
52
+ },
53
+ {
54
+ "epoch": 0.06,
55
+ "learning_rate": 0.000237,
56
+ "loss": 0.5817,
57
+ "step": 400
58
+ },
59
+ {
60
+ "epoch": 0.07,
61
+ "learning_rate": 0.000267,
62
+ "loss": 0.5916,
63
+ "step": 450
64
+ },
65
+ {
66
+ "epoch": 0.08,
67
+ "learning_rate": 0.00029699999999999996,
68
+ "loss": 0.5675,
69
+ "step": 500
70
+ },
71
+ {
72
+ "epoch": 0.09,
73
+ "learning_rate": 0.0002992913893064204,
74
+ "loss": 0.57,
75
+ "step": 550
76
+ },
77
+ {
78
+ "epoch": 0.09,
79
+ "learning_rate": 0.0002984861498818982,
80
+ "loss": 0.561,
81
+ "step": 600
82
+ },
83
+ {
84
+ "epoch": 0.1,
85
+ "learning_rate": 0.000297680910457376,
86
+ "loss": 0.5669,
87
+ "step": 650
88
+ },
89
+ {
90
+ "epoch": 0.11,
91
+ "learning_rate": 0.00029687567103285373,
92
+ "loss": 0.5659,
93
+ "step": 700
94
+ },
95
+ {
96
+ "epoch": 0.12,
97
+ "learning_rate": 0.0002960704316083315,
98
+ "loss": 0.5673,
99
+ "step": 750
100
+ },
101
+ {
102
+ "epoch": 0.13,
103
+ "learning_rate": 0.0002952651921838093,
104
+ "loss": 0.5619,
105
+ "step": 800
106
+ },
107
+ {
108
+ "epoch": 0.13,
109
+ "learning_rate": 0.00029449216233626795,
110
+ "loss": 0.5719,
111
+ "step": 850
112
+ },
113
+ {
114
+ "epoch": 0.14,
115
+ "learning_rate": 0.00029368692291174576,
116
+ "loss": 0.5576,
117
+ "step": 900
118
+ },
119
+ {
120
+ "epoch": 0.15,
121
+ "learning_rate": 0.0002928816834872235,
122
+ "loss": 0.5567,
123
+ "step": 950
124
+ },
125
+ {
126
+ "epoch": 0.16,
127
+ "learning_rate": 0.00029210865363968216,
128
+ "loss": 0.5597,
129
+ "step": 1000
130
+ },
131
+ {
132
+ "epoch": 0.16,
133
+ "eval_loss": 0.5003042221069336,
134
+ "eval_runtime": 95.3235,
135
+ "eval_samples_per_second": 118.879,
136
+ "eval_steps_per_second": 7.438,
137
+ "step": 1000
138
+ },
139
+ {
140
+ "epoch": 0.16,
141
+ "learning_rate": 0.0002913195190036504,
142
+ "loss": 0.5565,
143
+ "step": 1050
144
+ },
145
+ {
146
+ "epoch": 0.17,
147
+ "learning_rate": 0.00029057869873308994,
148
+ "loss": 0.5767,
149
+ "step": 1100
150
+ },
151
+ {
152
+ "epoch": 0.18,
153
+ "learning_rate": 0.00028978956409705817,
154
+ "loss": 0.562,
155
+ "step": 1150
156
+ },
157
+ {
158
+ "epoch": 0.19,
159
+ "learning_rate": 0.0002890004294610264,
160
+ "loss": 0.5864,
161
+ "step": 1200
162
+ },
163
+ {
164
+ "epoch": 0.2,
165
+ "learning_rate": 0.00028819519003650415,
166
+ "loss": 0.626,
167
+ "step": 1250
168
+ },
169
+ {
170
+ "epoch": 0.2,
171
+ "learning_rate": 0.0002873899506119819,
172
+ "loss": 0.7742,
173
+ "step": 1300
174
+ },
175
+ {
176
+ "epoch": 0.21,
177
+ "learning_rate": 0.0002866169207644406,
178
+ "loss": 1.1101,
179
+ "step": 1350
180
+ },
181
+ {
182
+ "epoch": 0.22,
183
+ "learning_rate": 0.00028581168133991837,
184
+ "loss": 1.3211,
185
+ "step": 1400
186
+ },
187
+ {
188
+ "epoch": 0.23,
189
+ "learning_rate": 0.0002850064419153961,
190
+ "loss": 1.413,
191
+ "step": 1450
192
+ },
193
+ {
194
+ "epoch": 0.24,
195
+ "learning_rate": 0.00028420120249087393,
196
+ "loss": 1.4265,
197
+ "step": 1500
198
+ },
199
+ {
200
+ "epoch": 0.24,
201
+ "learning_rate": 0.0002834281726433326,
202
+ "loss": 1.47,
203
+ "step": 1550
204
+ },
205
+ {
206
+ "epoch": 0.25,
207
+ "learning_rate": 0.00028262293321881034,
208
+ "loss": 1.4561,
209
+ "step": 1600
210
+ },
211
+ {
212
+ "epoch": 0.26,
213
+ "learning_rate": 0.0002818337985827786,
214
+ "loss": 1.4693,
215
+ "step": 1650
216
+ },
217
+ {
218
+ "epoch": 0.27,
219
+ "learning_rate": 0.0002810285591582563,
220
+ "loss": 1.4729,
221
+ "step": 1700
222
+ },
223
+ {
224
+ "epoch": 0.27,
225
+ "learning_rate": 0.00028022331973373413,
226
+ "loss": 1.4599,
227
+ "step": 1750
228
+ },
229
+ {
230
+ "epoch": 0.28,
231
+ "learning_rate": 0.0002794180803092119,
232
+ "loss": 1.4725,
233
+ "step": 1800
234
+ },
235
+ {
236
+ "epoch": 0.29,
237
+ "learning_rate": 0.0002786128408846897,
238
+ "loss": 1.4503,
239
+ "step": 1850
240
+ },
241
+ {
242
+ "epoch": 0.3,
243
+ "learning_rate": 0.0002778237062486579,
244
+ "loss": 1.4812,
245
+ "step": 1900
246
+ },
247
+ {
248
+ "epoch": 0.31,
249
+ "learning_rate": 0.0002770184668241357,
250
+ "loss": 1.4761,
251
+ "step": 1950
252
+ },
253
+ {
254
+ "epoch": 0.31,
255
+ "learning_rate": 0.00027621322739961344,
256
+ "loss": 1.496,
257
+ "step": 2000
258
+ },
259
+ {
260
+ "epoch": 0.31,
261
+ "eval_loss": 1.251204252243042,
262
+ "eval_runtime": 94.8348,
263
+ "eval_samples_per_second": 119.492,
264
+ "eval_steps_per_second": 7.476,
265
+ "step": 2000
266
+ },
267
+ {
268
+ "epoch": 0.32,
269
+ "learning_rate": 0.00027542409276358167,
270
+ "loss": 1.4488,
271
+ "step": 2050
272
+ },
273
+ {
274
+ "epoch": 0.33,
275
+ "learning_rate": 0.00027461885333905943,
276
+ "loss": 1.455,
277
+ "step": 2100
278
+ },
279
+ {
280
+ "epoch": 0.34,
281
+ "learning_rate": 0.00027381361391453724,
282
+ "loss": 1.4353,
283
+ "step": 2150
284
+ },
285
+ {
286
+ "epoch": 0.35,
287
+ "learning_rate": 0.000273008374490015,
288
+ "loss": 1.4524,
289
+ "step": 2200
290
+ },
291
+ {
292
+ "epoch": 0.35,
293
+ "learning_rate": 0.0002722192398539832,
294
+ "loss": 1.4701,
295
+ "step": 2250
296
+ },
297
+ {
298
+ "epoch": 0.36,
299
+ "learning_rate": 0.000271414000429461,
300
+ "loss": 1.4734,
301
+ "step": 2300
302
+ },
303
+ {
304
+ "epoch": 0.37,
305
+ "learning_rate": 0.0002706409705819197,
306
+ "loss": 1.5035,
307
+ "step": 2350
308
+ },
309
+ {
310
+ "epoch": 0.38,
311
+ "learning_rate": 0.00026983573115739744,
312
+ "loss": 1.4513,
313
+ "step": 2400
314
+ },
315
+ {
316
+ "epoch": 0.38,
317
+ "learning_rate": 0.00026904659652136567,
318
+ "loss": 1.4641,
319
+ "step": 2450
320
+ },
321
+ {
322
+ "epoch": 0.39,
323
+ "learning_rate": 0.0002682413570968434,
324
+ "loss": 1.4585,
325
+ "step": 2500
326
+ },
327
+ {
328
+ "epoch": 0.4,
329
+ "learning_rate": 0.00026743611767232123,
330
+ "loss": 1.4673,
331
+ "step": 2550
332
+ },
333
+ {
334
+ "epoch": 0.41,
335
+ "learning_rate": 0.0002666469830362894,
336
+ "loss": 1.4671,
337
+ "step": 2600
338
+ },
339
+ {
340
+ "epoch": 0.42,
341
+ "learning_rate": 0.0002658578484002577,
342
+ "loss": 1.4702,
343
+ "step": 2650
344
+ },
345
+ {
346
+ "epoch": 0.42,
347
+ "learning_rate": 0.00026508481855271634,
348
+ "loss": 1.4612,
349
+ "step": 2700
350
+ },
351
+ {
352
+ "epoch": 0.43,
353
+ "learning_rate": 0.0002642956839166845,
354
+ "loss": 1.4713,
355
+ "step": 2750
356
+ },
357
+ {
358
+ "epoch": 0.44,
359
+ "learning_rate": 0.00026350654928065275,
360
+ "loss": 1.4573,
361
+ "step": 2800
362
+ },
363
+ {
364
+ "epoch": 0.45,
365
+ "learning_rate": 0.000262717414644621,
366
+ "loss": 1.4586,
367
+ "step": 2850
368
+ },
369
+ {
370
+ "epoch": 0.45,
371
+ "learning_rate": 0.00026191217522009873,
372
+ "loss": 1.4674,
373
+ "step": 2900
374
+ },
375
+ {
376
+ "epoch": 0.46,
377
+ "learning_rate": 0.00026110693579557654,
378
+ "loss": 1.4466,
379
+ "step": 2950
380
+ },
381
+ {
382
+ "epoch": 0.47,
383
+ "learning_rate": 0.0002603339059480352,
384
+ "loss": 1.4897,
385
+ "step": 3000
386
+ },
387
+ {
388
+ "epoch": 0.47,
389
+ "eval_loss": 1.2417596578598022,
390
+ "eval_runtime": 94.8105,
391
+ "eval_samples_per_second": 119.523,
392
+ "eval_steps_per_second": 7.478,
393
+ "step": 3000
394
+ }
395
+ ],
396
+ "logging_steps": 50,
397
+ "max_steps": 19128,
398
+ "num_input_tokens_seen": 0,
399
+ "num_train_epochs": 3,
400
+ "save_steps": 1000,
401
+ "total_flos": 5.8981796020224e+16,
402
+ "train_batch_size": 16,
403
+ "trial_name": null,
404
+ "trial_params": null
405
+ }
checkpoint-3000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:020399f67c678641c05351df778629bde428b25cc882f50dae492e08cb9604ee
3
+ size 5073
checkpoint-3000/training_metrics.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "step": 3000,
3
+ "epoch": 0.4704775346977182,
4
+ "best_eval_loss": 0.5003042221069336,
5
+ "checkpoint_number": 3,
6
+ "recent_metrics": [
7
+ {
8
+ "step": 2600,
9
+ "epoch": 0.41,
10
+ "loss": 1.4671,
11
+ "learning_rate": 0.0002666469830362894,
12
+ "gpu_memory_gb": 0.8661794662475586,
13
+ "system_memory_percent": 6.7
14
+ },
15
+ {
16
+ "step": 2650,
17
+ "epoch": 0.42,
18
+ "loss": 1.4702,
19
+ "learning_rate": 0.0002658578484002577,
20
+ "gpu_memory_gb": 0.8661794662475586,
21
+ "system_memory_percent": 6.7
22
+ },
23
+ {
24
+ "step": 2700,
25
+ "epoch": 0.42,
26
+ "loss": 1.4612,
27
+ "learning_rate": 0.00026508481855271634,
28
+ "gpu_memory_gb": 0.8661794662475586,
29
+ "system_memory_percent": 6.8
30
+ },
31
+ {
32
+ "step": 2750,
33
+ "epoch": 0.43,
34
+ "loss": 1.4713,
35
+ "learning_rate": 0.0002642956839166845,
36
+ "gpu_memory_gb": 0.8661794662475586,
37
+ "system_memory_percent": 6.8
38
+ },
39
+ {
40
+ "step": 2800,
41
+ "epoch": 0.44,
42
+ "loss": 1.4573,
43
+ "learning_rate": 0.00026350654928065275,
44
+ "gpu_memory_gb": 0.8661794662475586,
45
+ "system_memory_percent": 6.8
46
+ },
47
+ {
48
+ "step": 2850,
49
+ "epoch": 0.45,
50
+ "loss": 1.4586,
51
+ "learning_rate": 0.000262717414644621,
52
+ "gpu_memory_gb": 0.8661794662475586,
53
+ "system_memory_percent": 6.8
54
+ },
55
+ {
56
+ "step": 2900,
57
+ "epoch": 0.45,
58
+ "loss": 1.4674,
59
+ "learning_rate": 0.00026191217522009873,
60
+ "gpu_memory_gb": 0.8661794662475586,
61
+ "system_memory_percent": 6.8
62
+ },
63
+ {
64
+ "step": 2950,
65
+ "epoch": 0.46,
66
+ "loss": 1.4466,
67
+ "learning_rate": 0.00026110693579557654,
68
+ "gpu_memory_gb": 0.8661794662475586,
69
+ "system_memory_percent": 6.8
70
+ },
71
+ {
72
+ "step": 3000,
73
+ "epoch": 0.47,
74
+ "loss": 1.4897,
75
+ "learning_rate": 0.0002603339059480352,
76
+ "gpu_memory_gb": 0.8661794662475586,
77
+ "system_memory_percent": 6.8
78
+ },
79
+ {
80
+ "step": 3000,
81
+ "epoch": 0.47,
82
+ "eval_loss": 1.2417596578598022,
83
+ "eval_runtime": 94.8105,
84
+ "eval_samples_per_second": 119.523,
85
+ "eval_steps_per_second": 7.478,
86
+ "gpu_memory_gb": 0.8661794662475586,
87
+ "system_memory_percent": 6.7
88
+ }
89
+ ]
90
+ }