new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

FastSwitch: Optimizing Context Switching Efficiency in Fairness-aware Large Language Model Serving

Serving numerous users and requests concurrently requires good fairness in Large Language Models (LLMs) serving system. This ensures that, at the same cost, the system can meet the Service Level Objectives (SLOs) of more users , such as time to first token (TTFT) and time between tokens (TBT), rather than allowing a few users to experience performance far exceeding the SLOs. To achieve better fairness, the preemption-based scheduling policy dynamically adjusts the priority of each request to maintain balance during runtime. However, existing systems tend to overly prioritize throughput, overlooking the overhead caused by preemption-induced context switching, which is crucial for maintaining fairness through priority adjustments. In this work, we identify three main challenges that result in this overhead. 1) Inadequate I/O utilization. 2) GPU idleness. 3) Unnecessary I/O transmission during multi-turn conversations. Our key insight is that the block-based KV cache memory policy in existing systems, while achieving near-zero memory waste, leads to discontinuity and insufficient granularity in the KV cache memory. To respond, we introduce FastSwitch, a fairness-aware serving system that not only aligns with existing KV cache memory allocation policy but also mitigates context switching overhead. Our evaluation shows that FastSwitch outperforms the state-of-the-art LLM serving system vLLM with speedups of 1.4-11.2x across different tail TTFT and TBT.

  • 3 authors
·
Nov 27, 2024

FlexLLM: A System for Co-Serving Large Language Model Inference and Parameter-Efficient Finetuning

Parameter-efficient finetuning (PEFT) is a widely used technique to adapt large language models for different tasks. Service providers typically create separate systems for users to perform PEFT model finetuning and inference tasks. This is because existing systems cannot handle workloads that include a mix of inference and PEFT finetuning requests. As a result, shared GPU resources are underutilized, leading to inefficiencies. To address this problem, we present FlexLLM, the first system that can serve inference and parameter-efficient finetuning requests in the same iteration. Our system leverages the complementary nature of these two tasks and utilizes shared GPU resources to run them jointly, using a method called co-serving. To achieve this, FlexLLM introduces a novel token-level finetuning mechanism, which breaks down the finetuning computation of a sequence into smaller token-level computations and uses dependent parallelization and graph pruning, two static compilation optimizations, to minimize the memory overhead and latency for co-serving. Compared to existing systems, FlexLLM's co-serving approach reduces the activation GPU memory overhead by up to 8x, and the end-to-end GPU memory requirement of finetuning by up to 36% while maintaining a low inference latency and improving finetuning throughput. For example, under a heavy inference workload, FlexLLM can still preserve more than 80% of the peak finetuning throughput, whereas existing systems cannot make any progress with finetuning. The source code of FlexLLM is publicly available at https://github.com/flexflow/FlexFlow.

  • 6 authors
·
Feb 28, 2024

Throttling Web Agents Using Reasoning Gates

AI web agents use Internet resources at far greater speed, scale, and complexity -- changing how users and services interact. Deployed maliciously or erroneously, these agents could overload content providers. At the same time, web agents can bypass CAPTCHAs and other defenses by mimicking user behavior or flood authentication systems with fake accounts. Yet providers must protect their services and content from denial-of-service attacks and scraping by web agents. In this paper, we design a framework that imposes tunable costs on agents before providing access to resources; we call this Web Agent Throttling. We start by formalizing Throttling Gates as challenges issued to an agent that are asymmetric, scalable, robust, and compatible with any agent. Focusing on a common component -- the language model -- we require the agent to solve reasoning puzzles, thereby incurring excessive token-generation costs. However, we find that using existing puzzles, e.g., coding or math, as throttling gates fails to satisfy our properties. To address this, we introduce rebus-based Reasoning Gates, synthetic text puzzles that require multi-hop reasoning over world knowledge (thereby throttling an agent's model). We design a scalable generation and verification protocol for such reasoning gates. Our framework achieves computational asymmetry, i.e., the response-generation cost is 9.2x higher than the generation cost for SOTA models. We further deploy reasoning gates on a custom website and Model Context Protocol (MCP) servers and evaluate with real-world web agents. Finally, we discuss the limitations and environmental impact of real-world deployment of our framework.

  • 5 authors
·
Sep 1

Serverless Cold Starts and Where to Find Them

This paper releases and analyzes a month-long trace of 85 billion user requests and 11.9 million cold starts from Huawei's serverless cloud platform. Our analysis spans workloads from five data centers. We focus on cold starts and provide a comprehensive examination of the underlying factors influencing the number and duration of cold starts. These factors include trigger types, request synchronicity, runtime languages, and function resource allocations. We investigate components of cold starts, including pod allocation time, code and dependency deployment time, and scheduling delays, and examine their relationships with runtime languages, trigger types, and resource allocation. We introduce pod utility ratio to measure the pod's useful lifetime relative to its cold start time, giving a more complete picture of cold starts, and see that some pods with long cold start times have longer useful lifetimes. Our findings reveal the complexity and multifaceted origins of the number, duration, and characteristics of cold starts, driven by differences in trigger types, runtime languages, and function resource allocations. For example, cold starts in Region 1 take up to 7 seconds, dominated by dependency deployment time and scheduling. In Region 2, cold starts take up to 3 seconds and are dominated by pod allocation time. Based on this, we identify opportunities to reduce the number and duration of cold starts using strategies for multi-region scheduling. Finally, we suggest directions for future research to address these challenges and enhance the performance of serverless cloud platforms. Our datasets and code are available here https://github.com/sir-lab/data-release

  • 8 authors
·
Oct 8, 2024

DistServe: Disaggregating Prefill and Decoding for Goodput-optimized Large Language Model Serving

DistServe improves the performance of large language models (LLMs) serving by disaggregating the prefill and decoding computation. Existing LLM serving systems colocate the two phases and batch the computation of prefill and decoding across all users and requests. We find that this strategy not only leads to strong prefill-decoding interferences but also couples the resource allocation and parallelism plans for both phases. LLM applications often emphasize individual latency for each phase: time to first token (TTFT) for the prefill phase and time per output token (TPOT) of each request for the decoding phase. In the presence of stringent latency requirements, existing systems have to prioritize one latency over the other, or over-provision compute resources to meet both. DistServe assigns prefill and decoding computation to different GPUs, hence eliminating prefill-decoding interferences. Given the application's TTFT and TPOT requirements, DistServe co-optimizes the resource allocation and parallelism strategy tailored for each phase. DistServe also places the two phases according to the serving cluster's bandwidth to minimize the communication caused by disaggregation. As a result, DistServe significantly improves LLM serving performance in terms of the maximum rate that can be served within both TTFT and TPOT constraints on each GPU. Our evaluations show that on various popular LLMs, applications, and latency requirements, DistServe can serve 4.48x more requests or 10.2x tighter SLO, compared to state-of-the-art systems, while staying within latency constraints for > 90% of requests.

  • 8 authors
·
Jan 17, 2024 1

Language models scale reliably with over-training and on downstream tasks

Scaling laws are useful guides for developing language models, but there are still gaps between current scaling studies and how language models are ultimately trained and evaluated. For instance, scaling is usually studied in the compute-optimal training regime (i.e., "Chinchilla optimal" regime); however, in practice, models are often over-trained to reduce inference costs. Moreover, scaling laws mostly predict loss on next-token prediction, but ultimately models are compared based on downstream task performance. In this paper, we address both shortcomings. To do so, we create a testbed of 104 models with 0.011B to 6.9B parameters trained with various numbers of tokens on three data distributions. First, we investigate scaling in the over-trained regime. We fit scaling laws that extrapolate in both the number of model parameters and the ratio of training tokens to parameters. This enables us to predict the validation loss of a 1.4B parameter, 900B token run (i.e., 32times over-trained) and a 6.9B parameter, 138B token runx2014each from experiments that take 300times less compute. Second, we relate the perplexity of a language model to its downstream task performance via a power law. We use this law to predict top-1 error averaged over downstream tasks for the two aforementioned models using experiments that take 20times less compute. Our experiments are available at https://github.com/mlfoundations/scaling.

  • 23 authors
·
Mar 13, 2024 1

BottleFit: Learning Compressed Representations in Deep Neural Networks for Effective and Efficient Split Computing

Although mission-critical applications require the use of deep neural networks (DNNs), their continuous execution at mobile devices results in a significant increase in energy consumption. While edge offloading can decrease energy consumption, erratic patterns in channel quality, network and edge server load can lead to severe disruption of the system's key operations. An alternative approach, called split computing, generates compressed representations within the model (called "bottlenecks"), to reduce bandwidth usage and energy consumption. Prior work has proposed approaches that introduce additional layers, to the detriment of energy consumption and latency. For this reason, we propose a new framework called BottleFit, which, in addition to targeted DNN architecture modifications, includes a novel training strategy to achieve high accuracy even with strong compression rates. We apply BottleFit on cutting-edge DNN models in image classification, and show that BottleFit achieves 77.1% data compression with up to 0.6% accuracy loss on ImageNet dataset, while state of the art such as SPINN loses up to 6% in accuracy. We experimentally measure the power consumption and latency of an image classification application running on an NVIDIA Jetson Nano board (GPU-based) and a Raspberry PI board (GPU-less). We show that BottleFit decreases power consumption and latency respectively by up to 49% and 89% with respect to (w.r.t.) local computing and by 37% and 55% w.r.t. edge offloading. We also compare BottleFit with state-of-the-art autoencoders-based approaches, and show that (i) BottleFit reduces power consumption and execution time respectively by up to 54% and 44% on the Jetson and 40% and 62% on Raspberry PI; (ii) the size of the head model executed on the mobile device is 83 times smaller. We publish the code repository for reproducibility of the results in this study.

  • 5 authors
·
Jan 7, 2022

Intelligence per Watt: Measuring Intelligence Efficiency of Local AI

Large language model (LLM) queries are predominantly processed by frontier models in centralized cloud infrastructure. Rapidly growing demand strains this paradigm, and cloud providers struggle to scale infrastructure at pace. Two advances enable us to rethink this paradigm: small LMs (<=20B active parameters) now achieve competitive performance to frontier models on many tasks, and local accelerators (e.g., Apple M4 Max) run these models at interactive latencies. This raises the question: can local inference viably redistribute demand from centralized infrastructure? Answering this requires measuring whether local LMs can accurately answer real-world queries and whether they can do so efficiently enough to be practical on power-constrained devices (i.e., laptops). We propose intelligence per watt (IPW), task accuracy divided by unit of power, as a metric for assessing capability and efficiency of local inference across model-accelerator pairs. We conduct a large-scale empirical study across 20+ state-of-the-art local LMs, 8 accelerators, and a representative subset of LLM traffic: 1M real-world single-turn chat and reasoning queries. For each query, we measure accuracy, energy, latency, and power. Our analysis reveals 3 findings. First, local LMs can accurately answer 88.7% of single-turn chat and reasoning queries with accuracy varying by domain. Second, from 2023-2025, IPW improved 5.3x and local query coverage rose from 23.2% to 71.3%. Third, local accelerators achieve at least 1.4x lower IPW than cloud accelerators running identical models, revealing significant headroom for optimization. These findings demonstrate that local inference can meaningfully redistribute demand from centralized infrastructure, with IPW serving as the critical metric for tracking this transition. We release our IPW profiling harness for systematic intelligence-per-watt benchmarking.

Stanford Stanford AI
·
Nov 11 3

Balancing Pipeline Parallelism with Vocabulary Parallelism

Pipeline parallelism is widely used to scale the training of transformer-based large language models, various works have been done to improve its throughput and memory footprint. In this paper, we address a frequently overlooked issue: the vocabulary layers can cause imbalanced computation and memory usage across pipeline stages, worsening pipeline bubbles and the memory bottleneck. To tackle this, we partition the vocabulary layers evenly across pipeline devices and group the computation into pipeline passes. To reduce the activation memory overhead, we propose several algorithms to reduce communication barriers within vocabulary layers. Additionally, we utilize a generalizable method to integrate Vocabulary Parallelism with existing pipeline schedules. By combining these techniques, our methods effectively balance the computation and parameter memory, with only a small constant activation memory overhead. Notably, when combined with activation memory-balanced schedules like V-Half, our approach achieves perfect balance in both memory and computation. Extensive evaluations demonstrate that our method achieves computation and memory balance regardless of the vocabulary size, resulting in a 5% to 51% improvement in throughput compared to naive approaches, meanwhile significantly reducing peak memory usage especially for large vocabulary scenarios. Our implementation is open-sourced at https://github.com/sail-sg/VocabularyParallelism .

  • 4 authors
·
Nov 7, 2024 3

From Tokens to Layers: Redefining Stall-Free Scheduling for LLM Serving with Layered Prefill

Large Language Model (LLM) inference in production must meet stringent service-level objectives for both time-to-first-token (TTFT) and time-between-token (TBT) while maximizing throughput under fixed compute, memory, and interconnect budgets. Modern serving systems adopt stall-free scheduling techniques such as chunked prefill, which splits long prompt processing along the token dimension and interleaves prefill with ongoing decode iterations. While effective at stabilizing TBT, chunked prefill incurs substantial overhead in Mixture-of-Experts (MoE) models: redundant expert weight loads increase memory traffic by up to 39% and inflate energy consumption. We propose layered prefill, a new scheduling paradigm that treats transformer layer groups as the primary scheduling unit. By vertically partitioning the model into contiguous layer groups and interleaving prefill and decode across the groups, layered prefill sustains stall-free decoding while eliminating chunk-induced MoE weight reloads. It reduces off-chip bandwidth demand, lowering TTFT by up to 70%, End-to-End latency by 41% and per-token energy by up to 22%. Evaluations show that layered prefill consistently improves the TTFT--TBT Pareto frontier over chunked prefill, reducing expert-load traffic and energy cost while maintaining stall-free decoding. Overall, shifting the scheduling axis from tokens to layers unlocks a new operating regime for high-efficiency, energy-aware LLM serving in co-located environments.

  • 5 authors
·
Oct 9

Efficient and Economic Large Language Model Inference with Attention Offloading

Transformer-based large language models (LLMs) exhibit impressive performance in generative tasks but introduce significant challenges in real-world serving due to inefficient use of the expensive, computation-optimized accelerators. This mismatch arises from the autoregressive nature of LLMs, where the generation phase comprises operators with varying resource demands. Specifically, the attention operator is memory-intensive, exhibiting a memory access pattern that clashes with the strengths of modern accelerators, especially as context length increases. To enhance the efficiency and cost-effectiveness of LLM serving, we introduce the concept of attention offloading. This approach leverages a collection of cheap, memory-optimized devices for the attention operator while still utilizing high-end accelerators for other parts of the model. This heterogeneous setup ensures that each component is tailored to its specific workload, maximizing overall performance and cost efficiency. Our comprehensive analysis and experiments confirm the viability of splitting the attention computation over multiple devices. Also, the communication bandwidth required between heterogeneous devices proves to be manageable with prevalent networking technologies. To further validate our theory, we develop Lamina, an LLM inference system that incorporates attention offloading. Experimental results indicate that Lamina can provide 1.48x-12.1x higher estimated throughput per dollar than homogeneous solutions.

  • 4 authors
·
May 2, 2024

Adding NVMe SSDs to Enable and Accelerate 100B Model Fine-tuning on a Single GPU

Recent advances in large language models have brought immense value to the world, with their superior capabilities stemming from the massive number of parameters they utilize. However, even the GPUs with the highest memory capacities, currently peaking at 80GB, are far from sufficient to accommodate these vast parameters and their associated optimizer states when conducting stochastic gradient descent-based optimization. One approach to hosting such huge models is to aggregate device memory from many GPUs. However, this approach introduces prohibitive costs for most academic researchers, who always have a limited budget for many high-end GPU servers. In this paper, we focus on huge model fine-tuning on a single, even low-end, GPU in a commodity server, which is accessible to most AI researchers. In such a scenario, the state-of-the-art work ZeRO-Infinity suffers from two severe issues when running in a commodity server: 1) low GPU utilization due to inefficient swapping, and 2) limited trainable model size due to CPU memory capacity. The underlying reason is that ZeRO-Infinity is optimized for running on high-end GPU servers. To this end, we present Fuyou, a low-cost training framework that enables efficient 100B huge model fine-tuning on a low-end server with a low-end GPU and limited CPU memory capacity. The key idea is to add the SSD-CPU communication as an optimization dimension and thus carefully co-optimize computation and data swapping from a systematic approach to maximize GPU utilization. The experimental results show that 1) Fuyou is able to fine-tune 175B GPT-3 on a consumer GPU RTX 4090 with high GPU utilization, while ZeRO-Infinity fails to fine-tune; and 2) when training a small GPT-3 13B model, Fuyou achieves 156 TFLOPS on an RTX 4090 GPU while ZeRO-Infinity only achieves 45 TFLOPS.

  • 7 authors
·
Mar 11, 2024 4

Improve Machine Learning carbon footprint using Nvidia GPU and Mixed Precision training for classification models -- Part I

This is the 1st part of the dissertation for my master degree and compares the power consumption using the default floating point (32bit) and Nvidia mixed precision (16bit and 32bit) while training a classification ML model. A custom PC with specific hardware was built to perform the experiments, and different ML hyper-parameters, such as batch size, neurons, and epochs, were chosen to build Deep Neural Networks (DNN). Additionally, various software was used during the experiments to collect the power consumption data in Watts from the Graphics Processing Unit (GPU), Central Processing Unit (CPU), Random Access Memory (RAM) and manually from a wattmeter connected to the wall. A benchmarking test with default hyper parameter values for the DNN was used as a reference, while the experiments used a combination of different settings. The results were recorded in Excel, and descriptive statistics were chosen to calculate the mean between the groups and compare them using graphs and tables. The outcome was positive when using mixed precision combined with specific hyper-parameters. Compared to the benchmarking, the optimisation for the classification reduced the power consumption between 7 and 11 Watts. Similarly, the carbon footprint is reduced because the calculation uses the same power consumption data. Still, a consideration is required when configuring hyper-parameters because it can negatively affect hardware performance. However, this research required inferential statistics, specifically ANOVA and T-test, to compare the relationship between the means. Furthermore, tests indicated no statistical significance of the relationship between the benchmarking and experiments. However, a more extensive implementation with a cluster of GPUs can increase the sample size significantly, as it is an essential factor and can change the outcome of the statistical analysis.

  • 1 authors
·
Sep 12, 2024

NanoFlow: Towards Optimal Large Language Model Serving Throughput

The increasing usage of Large Language Models (LLMs) has resulted in a surging demand for planet-scale serving systems, where tens of thousands of GPUs continuously serve hundreds of millions of users. Consequently, throughput (under reasonable latency constraints) has emerged as a key metric that determines serving systems' performance. To boost throughput, various methods of inter-device parallelism (e.g., data, tensor, pipeline) have been explored. However, existing methods do not consider overlapping the utilization of different resources within a single device, leading to underutilization and sub-optimal performance. We propose NanoFlow, a novel serving framework that exploits intra-device parallelism, which overlaps the usage of resources including compute, memory, and network within a single device through operation co-scheduling. To exploit intra-device parallelism, NanoFlow introduces two key innovations: First, NanoFlow splits requests into nano-batches at the granularity of operations, which breaks the dependency of sequential operations in LLM inference and enables overlapping; then, to get benefit from overlapping, NanoFlow uses an operation-level pipeline with execution unit scheduling, which partitions the device's functional units and simultaneously executes different operations in each unit. NanoFlow automates the pipeline setup using a parameter search algorithm, which enables easily porting NanoFlow to different models. We implement NanoFlow on NVIDIA GPUs and evaluate end-to-end serving throughput on several popular models such as LLaMA-2-70B, Mixtral 8x7B, LLaMA-3-8B, etc.. With practical workloads, NanoFlow provides 1.91x throughput boost compared to state-of-the-art serving systems achieving 59% to 72% of optimal throughput across ported models.

  • 15 authors
·
Aug 22, 2024 2

Com-DDPG: A Multiagent Reinforcement Learning-based Offloading Strategy for Mobile Edge Computing

The development of mobile services has impacted a variety of computation-intensive and time-sensitive applications, such as recommendation systems and daily payment methods. However, computing task competition involving limited resources increases the task processing latency and energy consumption of mobile devices, as well as time constraints. Mobile edge computing (MEC) has been widely used to address these problems. However, there are limitations to existing methods used during computation offloading. On the one hand, they focus on independent tasks rather than dependent tasks. The challenges of task dependency in the real world, especially task segmentation and integration, remain to be addressed. On the other hand, the multiuser scenarios related to resource allocation and the mutex access problem must be considered. In this paper, we propose a novel offloading approach, Com-DDPG, for MEC using multiagent reinforcement learning to enhance the offloading performance. First, we discuss the task dependency model, task priority model, energy consumption model, and average latency from the perspective of server clusters and multidependence on mobile tasks. Our method based on these models is introduced to formalize communication behavior among multiple agents; then, reinforcement learning is executed as an offloading strategy to obtain the results. Because of the incomplete state information, long short-term memory (LSTM) is employed as a decision-making tool to assess the internal state. Moreover, to optimize and support effective action, we consider using a bidirectional recurrent neural network (BRNN) to learn and enhance features obtained from agents' communication. Finally, we simulate experiments on the Alibaba cluster dataset. The results show that our method is better than other baselines in terms of energy consumption, load status and latency.

  • 5 authors
·
Dec 9, 2020

POLCA: Power Oversubscription in LLM Cloud Providers

Recent innovation in large language models (LLMs), and their myriad use-cases have rapidly driven up the compute capacity demand for datacenter GPUs. Several cloud providers and other enterprises have made substantial plans of growth in their datacenters to support these new workloads. One of the key bottleneck resources in datacenters is power, and given the increasing model sizes of LLMs, they are becoming increasingly power intensive. In this paper, we show that there is a significant opportunity to oversubscribe power in LLM clusters. Power oversubscription improves the power efficiency of these datacenters, allowing more deployable servers per datacenter, and reduces the deployment time, since building new datacenters is slow. We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the inference and training power consumption patterns. Based on our analysis of these LLMs, we claim that the average and peak power utilization in LLM clusters for inference should not be very high. Our deductions align with the data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment, makes it challenging to have a reliable and robust power oversubscription mechanism. We propose POLCA, our framework for power oversubscription that is robust, reliable, and readily deployable for GPU clusters. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in the same GPU cluster for inference, with minimal performance loss

  • 7 authors
·
Aug 24, 2023

BatchLLM: Optimizing Large Batched LLM Inference with Global Prefix Sharing and Throughput-oriented Token Batching

Many LLM tasks are performed in large batches or even offline, and the performance indictor for which is throughput. These tasks usually show the characteristic of prefix sharing, where different prompt input can partially show the common prefix. However, the existing LLM inference engines tend to optimize the streaming requests and show limitations of supporting the large batched tasks with the prefix sharing characteristic. The existing solutions use the LRU-based cache to reuse the KV context of common prefix. The KV context that is about to be reused may prematurely be evicted with the implicit cache management. Even if not evicted, the lifetime of the shared KV context is extended since requests sharing the same context are not scheduled together, resulting in larger memory usage. These streaming oriented systems schedule the requests in the first-come-first-serve or similar order. As a result, the requests with larger ratio of decoding steps may be scheduled too late to be able to mix with the prefill chunks to increase the hardware utilization. Besides, the token and request number based batching can limit the size of token-batch, which keeps the GPU from saturating for the iterations dominated by decoding tokens. We propose BatchLLM to address the above problems. BatchLLM explicitly identifies the common prefixes globally. The requests sharing the same prefix will be scheduled together to reuse the KV context the best, which also shrinks the lifetime of common KV memory. BatchLLM reorders the requests and schedules the requests with larger ratio of decoding first to better mix the decoding tokens with the latter prefill chunks and applies memory-centric token batching to enlarge the token-batch sizes, which helps to increase the GPU utilization. Extensive evaluation shows that BatchLLM outperforms vLLM by 1.1x to 2x on a set of microbenchmarks and two typical industry workloads.

  • 6 authors
·
Nov 29, 2024

Analysis and Optimized CXL-Attached Memory Allocation for Long-Context LLM Fine-Tuning

The growing prevalence of Large Language Models (LLMs) and their substantial memory requirements have prompted renewed interest in CPU offloading as a method to compensate for limited GPU memory. In particular, when CPU memory is leveraged to temporarily store intermediate states of LLMs, CPU memory becomes a new bottleneck and soon reaches the capacity limitation of commodity CPUs. In this work, we investigate the effectiveness of Compute Express Link (CXL) add-in card (AIC) memory as an extension to CPU memory, enabling larger model sizes and longer context lengths during fine-tuning. Through extensive benchmarking, this study quantifies the performance overhead introduced by transferring data between CXL memory, CPU, and GPUs, focusing on how concurrency and data volume influence bandwidth utilization and latency. This study also compares CPUbased optimizer steps when model parameters, gradients, and optimizer states reside in local memory versus CXL memory, revealing that naive adoption of CXL often degrades performance during the optimizer phase. To overcome these challenges, this study proposes a CXL-aware allocation to strategically partition CPU offloading workloads across both local and CXL memory. This study further demonstrates that employing multiple AICs significantly reduces bandwidth contention, thus improving scalability. Experimental results show that these optimizations enable efficient long-context LLM fine-tuning, underscoring CXL as a promising avenue for unlocking the full potential of CPU offloading in long-context LLM fine-tuning.

  • 2 authors
·
Jul 4

Where there's a will there's a way: ChatGPT is used more for science in countries where it is prohibited

Regulating AI is a key societal challenge, but which regulation methods are effective is unclear. This study measures the effectiveness of restricting AI services geographically, focusing on ChatGPT. OpenAI restricts ChatGPT access in several countries, including China and Russia. If restrictions are effective, ChatGPT use should be minimal in these countries. We measured use with a classifier based on distinctive word usage found in early versions of ChatGPT, e.g. "delve." We trained the classifier on pre- and post-ChatGPT "polished" abstracts and found it outperformed GPTZero and ZeroGPT on validation sets, including papers with self-reported AI use. Applying the classifier to preprints from Arxiv, BioRxiv, and MedRxiv showed ChatGPT was used in about 12.6% of preprints by August 2023, with 7.7% higher usage in restricted countries. The gap appeared before China's first major legal LLM became widely available. To test the possibility that, due to high demand, use in restricted countries would have been even higher without restrictions, we compared Asian countries with high expected demand (where English is not an official language) and found that use was higher in those with restrictions. ChatGPT use was correlated with higher views and downloads, but not citations or journal placement. Overall, restricting ChatGPT geographically has proven ineffective in science and possibly other domains, likely due to widespread workarounds.

  • 3 authors
·
Jun 17, 2024

A Water Efficiency Dataset for African Data Centers

AI computing and data centers consume a large amount of freshwater, both directly for cooling and indirectly for electricity generation. While most attention has been paid to developed countries such as the U.S., this paper presents the first-of-its-kind dataset that combines nation-level weather and electricity generation data to estimate water usage efficiency for data centers in 41 African countries across five different climate regions. We also use our dataset to evaluate and estimate the water consumption of inference on two large language models (i.e., Llama-3-70B and GPT-4) in 11 selected African countries. Our findings show that writing a 10-page report using Llama-3-70B could consume about 0.7 liters of water, while the water consumption by GPT-4 for the same task may go up to about 60 liters. For writing a medium-length email of 120-200 words, Llama-3-70B and GPT-4 could consume about 0.13 liters and 3 liters of water, respectively. Interestingly, given the same AI model, 8 out of the 11 selected African countries consume less water than the global average, mainly because of lower water intensities for electricity generation. However, water consumption can be substantially higher in some African countries with a steppe climate than the U.S. and global averages, prompting more attention when deploying AI computing in these countries. Our dataset is publicly available on https://huggingface.co/datasets/masterlion/WaterEfficientDatasetForAfricanCountries/tree/main{Hugging Face}.

  • 5 authors
·
Dec 4, 2024