new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Detector Guidance for Multi-Object Text-to-Image Generation

Diffusion models have demonstrated impressive performance in text-to-image generation. They utilize a text encoder and cross-attention blocks to infuse textual information into images at a pixel level. However, their capability to generate images with text containing multiple objects is still restricted. Previous works identify the problem of information mixing in the CLIP text encoder and introduce the T5 text encoder or incorporate strong prior knowledge to assist with the alignment. We find that mixing problems also occur on the image side and in the cross-attention blocks. The noisy images can cause different objects to appear similar, and the cross-attention blocks inject information at a pixel level, leading to leakage of global object understanding and resulting in object mixing. In this paper, we introduce Detector Guidance (DG), which integrates a latent object detection model to separate different objects during the generation process. DG first performs latent object detection on cross-attention maps (CAMs) to obtain object information. Based on this information, DG then masks conflicting prompts and enhances related prompts by manipulating the following CAMs. We evaluate the effectiveness of DG using Stable Diffusion on COCO, CC, and a novel multi-related object benchmark, MRO. Human evaluations demonstrate that DG provides an 8-22\% advantage in preventing the amalgamation of conflicting concepts and ensuring that each object possesses its unique region without any human involvement and additional iterations. Our implementation is available at https://github.com/luping-liu/Detector-Guidance.

  • 6 authors
·
Jun 3, 2023

Monocular 3D Object Detection with Bounding Box Denoising in 3D by Perceiver

The main challenge of monocular 3D object detection is the accurate localization of 3D center. Motivated by a new and strong observation that this challenge can be remedied by a 3D-space local-grid search scheme in an ideal case, we propose a stage-wise approach, which combines the information flow from 2D-to-3D (3D bounding box proposal generation with a single 2D image) and 3D-to-2D (proposal verification by denoising with 3D-to-2D contexts) in a top-down manner. Specifically, we first obtain initial proposals from off-the-shelf backbone monocular 3D detectors. Then, we generate a 3D anchor space by local-grid sampling from the initial proposals. Finally, we perform 3D bounding box denoising at the 3D-to-2D proposal verification stage. To effectively learn discriminative features for denoising highly overlapped proposals, this paper presents a method of using the Perceiver I/O model to fuse the 3D-to-2D geometric information and the 2D appearance information. With the encoded latent representation of a proposal, the verification head is implemented with a self-attention module. Our method, named as MonoXiver, is generic and can be easily adapted to any backbone monocular 3D detectors. Experimental results on the well-established KITTI dataset and the challenging large-scale Waymo dataset show that MonoXiver consistently achieves improvement with limited computation overhead.

  • 6 authors
·
Apr 3, 2023

GiraffeDet: A Heavy-Neck Paradigm for Object Detection

In conventional object detection frameworks, a backbone body inherited from image recognition models extracts deep latent features and then a neck module fuses these latent features to capture information at different scales. As the resolution in object detection is much larger than in image recognition, the computational cost of the backbone often dominates the total inference cost. This heavy-backbone design paradigm is mostly due to the historical legacy when transferring image recognition models to object detection rather than an end-to-end optimized design for object detection. In this work, we show that such paradigm indeed leads to sub-optimal object detection models. To this end, we propose a novel heavy-neck paradigm, GiraffeDet, a giraffe-like network for efficient object detection. The GiraffeDet uses an extremely lightweight backbone and a very deep and large neck module which encourages dense information exchange among different spatial scales as well as different levels of latent semantics simultaneously. This design paradigm allows detectors to process the high-level semantic information and low-level spatial information at the same priority even in the early stage of the network, making it more effective in detection tasks. Numerical evaluations on multiple popular object detection benchmarks show that GiraffeDet consistently outperforms previous SOTA models across a wide spectrum of resource constraints. The source code is available at https://github.com/jyqi/GiraffeDet.

  • 6 authors
·
Feb 8, 2022

YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception

The YOLO series models reign supreme in real-time object detection due to their superior accuracy and computational efficiency. However, both the convolutional architectures of YOLO11 and earlier versions and the area-based self-attention mechanism introduced in YOLOv12 are limited to local information aggregation and pairwise correlation modeling, lacking the capability to capture global multi-to-multi high-order correlations, which limits detection performance in complex scenarios. In this paper, we propose YOLOv13, an accurate and lightweight object detector. To address the above-mentioned challenges, we propose a Hypergraph-based Adaptive Correlation Enhancement (HyperACE) mechanism that adaptively exploits latent high-order correlations and overcomes the limitation of previous methods that are restricted to pairwise correlation modeling based on hypergraph computation, achieving efficient global cross-location and cross-scale feature fusion and enhancement. Subsequently, we propose a Full-Pipeline Aggregation-and-Distribution (FullPAD) paradigm based on HyperACE, which effectively achieves fine-grained information flow and representation synergy within the entire network by distributing correlation-enhanced features to the full pipeline. Finally, we propose to leverage depthwise separable convolutions to replace vanilla large-kernel convolutions, and design a series of blocks that significantly reduce parameters and computational complexity without sacrificing performance. We conduct extensive experiments on the widely used MS COCO benchmark, and the experimental results demonstrate that our method achieves state-of-the-art performance with fewer parameters and FLOPs. Specifically, our YOLOv13-N improves mAP by 3.0\% over YOLO11-N and by 1.5\% over YOLOv12-N. The code and models of our YOLOv13 model are available at: https://github.com/iMoonLab/yolov13.

  • 10 authors
·
Jun 21

CoDiff: Conditional Diffusion Model for Collaborative 3D Object Detection

Collaborative 3D object detection holds significant importance in the field of autonomous driving, as it greatly enhances the perception capabilities of each individual agent by facilitating information exchange among multiple agents. However, in practice, due to pose estimation errors and time delays, the fusion of information across agents often results in feature representations with spatial and temporal noise, leading to detection errors. Diffusion models naturally have the ability to denoise noisy samples to the ideal data, which motivates us to explore the use of diffusion models to address the noise problem between multi-agent systems. In this work, we propose CoDiff, a novel robust collaborative perception framework that leverages the potential of diffusion models to generate more comprehensive and clearer feature representations. To the best of our knowledge, this is the first work to apply diffusion models to multi-agent collaborative perception. Specifically, we project high-dimensional feature map into the latent space of a powerful pre-trained autoencoder. Within this space, individual agent information serves as a condition to guide the diffusion model's sampling. This process denoises coarse feature maps and progressively refines the fused features. Experimental study on both simulated and real-world datasets demonstrates that the proposed framework CoDiff consistently outperforms existing relevant methods in terms of the collaborative object detection performance, and exhibits highly desired robustness when the pose and delay information of agents is with high-level noise. The code is released at https://github.com/HuangZhe885/CoDiff

  • 4 authors
·
Feb 16

KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection

Achieving a reliable LiDAR-based object detector in autonomous driving is paramount, but its success hinges on obtaining large amounts of precise 3D annotations. Active learning (AL) seeks to mitigate the annotation burden through algorithms that use fewer labels and can attain performance comparable to fully supervised learning. Although AL has shown promise, current approaches prioritize the selection of unlabeled point clouds with high uncertainty and/or diversity, leading to the selection of more instances for labeling and reduced computational efficiency. In this paper, we resort to a novel kernel coding rate maximization (KECOR) strategy which aims to identify the most informative point clouds to acquire labels through the lens of information theory. Greedy search is applied to seek desired point clouds that can maximize the minimal number of bits required to encode the latent features. To determine the uniqueness and informativeness of the selected samples from the model perspective, we construct a proxy network of the 3D detector head and compute the outer product of Jacobians from all proxy layers to form the empirical neural tangent kernel (NTK) matrix. To accommodate both one-stage (i.e., SECOND) and two-stage detectors (i.e., PVRCNN), we further incorporate the classification entropy maximization and well trade-off between detection performance and the total number of bounding boxes selected for annotation. Extensive experiments conducted on two 3D benchmarks and a 2D detection dataset evidence the superiority and versatility of the proposed approach. Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art AL method, without compromising detection performance.

  • 6 authors
·
Jul 16, 2023

Hyp-OW: Exploiting Hierarchical Structure Learning with Hyperbolic Distance Enhances Open World Object Detection

Open World Object Detection (OWOD) is a challenging and realistic task that extends beyond the scope of standard Object Detection task. It involves detecting both known and unknown objects while integrating learned knowledge for future tasks. However, the level of "unknownness" varies significantly depending on the context. For example, a tree is typically considered part of the background in a self-driving scene, but it may be significant in a household context. We argue that this contextual information should already be embedded within the known classes. In other words, there should be a semantic or latent structure relationship between the known and unknown items to be discovered. Motivated by this observation, we propose Hyp-OW, a method that learns and models hierarchical representation of known items through a SuperClass Regularizer. Leveraging this representation allows us to effectively detect unknown objects using a similarity distance-based relabeling module. Extensive experiments on benchmark datasets demonstrate the effectiveness of Hyp-OW, achieving improvement in both known and unknown detection (up to 6 percent). These findings are particularly pronounced in our newly designed benchmark, where a strong hierarchical structure exists between known and unknown objects. Our code can be found at https://github.com/tldoan/-HYP-OW-AAAI-2024-

  • 6 authors
·
Jun 25, 2023

EvRT-DETR: Latent Space Adaptation of Image Detectors for Event-based Vision

Event-based cameras (EBCs) have emerged as a bio-inspired alternative to traditional cameras, offering advantages in power efficiency, temporal resolution, and high dynamic range. However, the development of image analysis methods for EBCs is challenging due to the sparse and asynchronous nature of the data. This work addresses the problem of object detection for EBC cameras. The current approaches to EBC object detection focus on constructing complex data representations and rely on specialized architectures. We introduce I2EvDet (Image-to-Event Detection), a novel adaptation framework that bridges mainstream object detection with temporal event data processing. First, we demonstrate that a Real-Time DEtection TRansformer, or RT-DETR, a state-of-the-art natural image detector, trained on a simple image-like representation of the EBC data achieves performance comparable to specialized EBC methods. Next, as part of our framework, we develop an efficient adaptation technique that transforms image-based detectors into event-based detection models by modifying their frozen latent representation space through minimal architectural additions. The resulting EvRT-DETR model reaches state-of-the-art performance on the standard benchmark datasets Gen1 (mAP +2.3) and 1Mpx/Gen4 (mAP +1.4). These results demonstrate a fundamentally new approach to EBC object detection through principled adaptation of mainstream architectures, offering an efficient alternative with potential applications to other temporal visual domains. The code is available at: https://github.com/realtime-intelligence/evrt-detr

  • 5 authors
·
Dec 3, 2024

TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention

Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.

  • 9 authors
·
Mar 13 2

UpCycling: Semi-supervised 3D Object Detection without Sharing Raw-level Unlabeled Scenes

Semi-supervised Learning (SSL) has received increasing attention in autonomous driving to reduce the enormous burden of 3D annotation. In this paper, we propose UpCycling, a novel SSL framework for 3D object detection with zero additional raw-level point cloud: learning from unlabeled de-identified intermediate features (i.e., smashed data) to preserve privacy. Since these intermediate features are naturally produced by the inference pipeline, no additional computation is required on autonomous vehicles. However, generating effective consistency loss for unlabeled feature-level scene turns out to be a critical challenge. The latest SSL frameworks for 3D object detection that enforce consistency regularization between different augmentations of an unlabeled raw-point scene become detrimental when applied to intermediate features. To solve the problem, we introduce a novel combination of hybrid pseudo labels and feature-level Ground Truth sampling (F-GT), which safely augments unlabeled multi-type 3D scene features and provides high-quality supervision. We implement UpCycling on two representative 3D object detection models: SECOND-IoU and PV-RCNN. Experiments on widely-used datasets (Waymo, KITTI, and Lyft) verify that UpCycling outperforms other augmentation methods applied at the feature level. In addition, while preserving privacy, UpCycling performs better or comparably to the state-of-the-art methods that utilize raw-level unlabeled data in both domain adaptation and partial-label scenarios.

  • 5 authors
·
Nov 21, 2022

YOLO26: Key Architectural Enhancements and Performance Benchmarking for Real-Time Object Detection

This study presents a comprehensive analysis of Ultralytics YOLO26, highlighting its key architectural enhancements and performance benchmarking for real-time object detection. YOLO26, released in September 2025, stands as the newest and most advanced member of the YOLO family, purpose-built to deliver efficiency, accuracy, and deployment readiness on edge and low-power devices. The paper sequentially details architectural innovations of YOLO26, including the removal of Distribution Focal Loss (DFL), adoption of end-to-end NMS-free inference, integration of ProgLoss and Small-Target-Aware Label Assignment (STAL), and the introduction of the MuSGD optimizer for stable convergence. Beyond architecture, the study positions YOLO26 as a multi-task framework, supporting object detection, instance segmentation, pose/keypoints estimation, oriented detection, and classification. We present performance benchmarks of YOLO26 on edge devices such as NVIDIA Jetson Nano and Orin, comparing its results with YOLOv8, YOLOv11, YOLOv12, YOLOv13, and transformer-based detectors(RF-DETR and RT-DETR). This paper further explores real-time deployment pathways, flexible export options (ONNX, TensorRT, CoreML, TFLite), and quantization for INT8/FP16. Practical use cases of YOLO26 across robotics, manufacturing, and IoT are highlighted to demonstrate cross-industry adaptability. Finally, insights on deployment efficiency and broader implications are discussed, with future directions for YOLO26 and the YOLO lineage outlined.

  • 4 authors
·
Sep 29

LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection

Computational efficiency in deep neural networks is critical for object detection, especially as newer models prioritize speed over efficient computation (FLOP). This evolution has somewhat left behind embedded and mobile-oriented AI object detection applications. In this paper, we focus on design choices of neural network architectures for efficient object detection computation based on FLOP and propose several optimizations to enhance the efficiency of YOLO-based models. Firstly, we introduce an efficient backbone scaling inspired by inverted bottlenecks and theoretical insights from the Information Bottleneck principle. Secondly, we present the Fast Pyramidal Architecture Network (FPAN), designed to facilitate fast multiscale feature sharing while reducing computational resources. Lastly, we propose a Decoupled Network-in-Network (DNiN) detection head engineered to deliver rapid yet lightweight computations for classification and regression tasks. Building upon these optimizations and leveraging more efficient backbones, this paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO. Our contribution consistently outperforms existing models in various resource constraints, achieving unprecedented accuracy and flop ratio. Notably, LeYOLO-Small achieves a competitive mAP score of 38.2% on the COCOval with just 4.5 FLOP(G), representing a 42% reduction in computational load compared to the latest state-of-the-art YOLOv9-Tiny model while achieving similar accuracy. Our novel model family achieves a FLOP-to-accuracy ratio previously unattained, offering scalability that spans from ultra-low neural network configurations (< 1 GFLOP) to efficient yet demanding object detection setups (> 4 GFLOPs) with 25.2, 31.3, 35.2, 38.2, 39.3 and 41 mAP for 0.66, 1.47, 2.53, 4.51, 5.8 and 8.4 FLOP(G).

  • 4 authors
·
Jun 20, 2024

Object Detection with Multimodal Large Vision-Language Models: An In-depth Review

The fusion of language and vision in large vision-language models (LVLMs) has revolutionized deep learning-based object detection by enhancing adaptability, contextual reasoning, and generalization beyond traditional architectures. This in-depth review presents a structured exploration of the state-of-the-art in LVLMs, systematically organized through a three-step research review process. First, we discuss the functioning of vision language models (VLMs) for object detection, describing how these models harness natural language processing (NLP) and computer vision (CV) techniques to revolutionize object detection and localization. We then explain the architectural innovations, training paradigms, and output flexibility of recent LVLMs for object detection, highlighting how they achieve advanced contextual understanding for object detection. The review thoroughly examines the approaches used in integration of visual and textual information, demonstrating the progress made in object detection using VLMs that facilitate more sophisticated object detection and localization strategies. This review presents comprehensive visualizations demonstrating LVLMs' effectiveness in diverse scenarios including localization and segmentation, and then compares their real-time performance, adaptability, and complexity to traditional deep learning systems. Based on the review, its is expected that LVLMs will soon meet or surpass the performance of conventional methods in object detection. The review also identifies a few major limitations of the current LVLM modes, proposes solutions to address those challenges, and presents a clear roadmap for the future advancement in this field. We conclude, based on this study, that the recent advancement in LVLMs have made and will continue to make a transformative impact on object detection and robotic applications in the future.

  • 2 authors
·
Aug 25

DesCo: Learning Object Recognition with Rich Language Descriptions

Recent development in vision-language approaches has instigated a paradigm shift in learning visual recognition models from language supervision. These approaches align objects with language queries (e.g. "a photo of a cat") and improve the models' adaptability to identify novel objects and domains. Recently, several studies have attempted to query these models with complex language expressions that include specifications of fine-grained semantic details, such as attributes, shapes, textures, and relations. However, simply incorporating language descriptions as queries does not guarantee accurate interpretation by the models. In fact, our experiments show that GLIP, the state-of-the-art vision-language model for object detection, often disregards contextual information in the language descriptions and instead relies heavily on detecting objects solely by their names. To tackle the challenges, we propose a new description-conditioned (DesCo) paradigm of learning object recognition models with rich language descriptions consisting of two major innovations: 1) we employ a large language model as a commonsense knowledge engine to generate rich language descriptions of objects based on object names and the raw image-text caption; 2) we design context-sensitive queries to improve the model's ability in deciphering intricate nuances embedded within descriptions and enforce the model to focus on context rather than object names alone. On two novel object detection benchmarks, LVIS and OminiLabel, under the zero-shot detection setting, our approach achieves 34.8 APr minival (+9.1) and 29.3 AP (+3.6), respectively, surpassing the prior state-of-the-art models, GLIP and FIBER, by a large margin.

  • 4 authors
·
Jun 24, 2023

LD-ZNet: A Latent Diffusion Approach for Text-Based Image Segmentation

Large-scale pre-training tasks like image classification, captioning, or self-supervised techniques do not incentivize learning the semantic boundaries of objects. However, recent generative foundation models built using text-based latent diffusion techniques may learn semantic boundaries. This is because they have to synthesize intricate details about all objects in an image based on a text description. Therefore, we present a technique for segmenting real and AI-generated images using latent diffusion models (LDMs) trained on internet-scale datasets. First, we show that the latent space of LDMs (z-space) is a better input representation compared to other feature representations like RGB images or CLIP encodings for text-based image segmentation. By training the segmentation models on the latent z-space, which creates a compressed representation across several domains like different forms of art, cartoons, illustrations, and photographs, we are also able to bridge the domain gap between real and AI-generated images. We show that the internal features of LDMs contain rich semantic information and present a technique in the form of LD-ZNet to further boost the performance of text-based segmentation. Overall, we show up to 6% improvement over standard baselines for text-to-image segmentation on natural images. For AI-generated imagery, we show close to 20% improvement compared to state-of-the-art techniques. The project is available at https://koutilya-pnvr.github.io/LD-ZNet/.

  • 5 authors
·
Mar 22, 2023

GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment

Recent breakthroughs in diffusion models, multimodal pretraining, and efficient finetuning have led to an explosion of text-to-image generative models. Given human evaluation is expensive and difficult to scale, automated methods are critical for evaluating the increasingly large number of new models. However, most current automated evaluation metrics like FID or CLIPScore only offer a holistic measure of image quality or image-text alignment, and are unsuited for fine-grained or instance-level analysis. In this paper, we introduce GenEval, an object-focused framework to evaluate compositional image properties such as object co-occurrence, position, count, and color. We show that current object detection models can be leveraged to evaluate text-to-image models on a variety of generation tasks with strong human agreement, and that other discriminative vision models can be linked to this pipeline to further verify properties like object color. We then evaluate several open-source text-to-image models and analyze their relative generative capabilities on our benchmark. We find that recent models demonstrate significant improvement on these tasks, though they are still lacking in complex capabilities such as spatial relations and attribute binding. Finally, we demonstrate how GenEval might be used to help discover existing failure modes, in order to inform development of the next generation of text-to-image models. Our code to run the GenEval framework is publicly available at https://github.com/djghosh13/geneval.

  • 3 authors
·
Oct 17, 2023

LMM-Det: Make Large Multimodal Models Excel in Object Detection

Large multimodal models (LMMs) have garnered wide-spread attention and interest within the artificial intelligence research and industrial communities, owing to their remarkable capability in multimodal understanding, reasoning, and in-context learning, among others. While LMMs have demonstrated promising results in tackling multimodal tasks like image captioning, visual question answering, and visual grounding, the object detection capabilities of LMMs exhibit a significant gap compared to specialist detectors. To bridge the gap, we depart from the conventional methods of integrating heavy detectors with LMMs and propose LMM-Det, a simple yet effective approach that leverages a Large Multimodal Model for vanilla object Detection without relying on specialized detection modules. Specifically, we conduct a comprehensive exploratory analysis when a large multimodal model meets with object detection, revealing that the recall rate degrades significantly compared with specialist detection models. To mitigate this, we propose to increase the recall rate by introducing data distribution adjustment and inference optimization tailored for object detection. We re-organize the instruction conversations to enhance the object detection capabilities of large multimodal models. We claim that a large multimodal model possesses detection capability without any extra detection modules. Extensive experiments support our claim and show the effectiveness of the versatile LMM-Det. The datasets, models, and codes are available at https://github.com/360CVGroup/LMM-Det.

  • 5 authors
·
Jul 24

Beyond Few-shot Object Detection: A Detailed Survey

Object detection is a critical field in computer vision focusing on accurately identifying and locating specific objects in images or videos. Traditional methods for object detection rely on large labeled training datasets for each object category, which can be time-consuming and expensive to collect and annotate. To address this issue, researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles. These approaches allow models to quickly adapt to new object categories with only a few annotated samples. While traditional FSOD methods have been studied before, this survey paper comprehensively reviews FSOD research with a specific focus on covering different FSOD settings such as standard FSOD, generalized FSOD, incremental FSOD, open-set FSOD, and domain adaptive FSOD. These approaches play a vital role in reducing the reliance on extensive labeled datasets, particularly as the need for efficient machine learning models continues to rise. This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task. It thoroughly compares state-of-the-art methods across different FSOD settings, analyzing them in detail based on their evaluation protocols. Additionally, it offers insights into their applications, challenges, and potential future directions in the evolving field of object detection with limited data.

  • 5 authors
·
Aug 26, 2024

DMT-JEPA: Discriminative Masked Targets for Joint-Embedding Predictive Architecture

The joint-embedding predictive architecture (JEPA) recently has shown impressive results in extracting visual representations from unlabeled imagery under a masking strategy. However, we reveal its disadvantages, notably its insufficient understanding of local semantics. This deficiency originates from masked modeling in the embedding space, resulting in a reduction of discriminative power and can even lead to the neglect of critical local semantics. To bridge this gap, we introduce DMT-JEPA, a novel masked modeling objective rooted in JEPA, specifically designed to generate discriminative latent targets from neighboring information. Our key idea is simple: we consider a set of semantically similar neighboring patches as a target of a masked patch. To be specific, the proposed DMT-JEPA (a) computes feature similarities between each masked patch and its corresponding neighboring patches to select patches having semantically meaningful relations, and (b) employs lightweight cross-attention heads to aggregate features of neighboring patches as the masked targets. Consequently, DMT-JEPA demonstrates strong discriminative power, offering benefits across a diverse spectrum of downstream tasks. Through extensive experiments, we demonstrate our effectiveness across various visual benchmarks, including ImageNet-1K image classification, ADE20K semantic segmentation, and COCO object detection tasks. Code is available at: https://github.com/DMTJEPA/DMTJEPA.

  • 2 authors
·
May 28, 2024

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning

Contrastive learning methods for unsupervised visual representation learning have reached remarkable levels of transfer performance. We argue that the power of contrastive learning has yet to be fully unleashed, as current methods are trained only on instance-level pretext tasks, leading to representations that may be sub-optimal for downstream tasks requiring dense pixel predictions. In this paper, we introduce pixel-level pretext tasks for learning dense feature representations. The first task directly applies contrastive learning at the pixel level. We additionally propose a pixel-to-propagation consistency task that produces better results, even surpassing the state-of-the-art approaches by a large margin. Specifically, it achieves 60.2 AP, 41.4 / 40.5 mAP and 77.2 mIoU when transferred to Pascal VOC object detection (C4), COCO object detection (FPN / C4) and Cityscapes semantic segmentation using a ResNet-50 backbone network, which are 2.6 AP, 0.8 / 1.0 mAP and 1.0 mIoU better than the previous best methods built on instance-level contrastive learning. Moreover, the pixel-level pretext tasks are found to be effective for pre-training not only regular backbone networks but also head networks used for dense downstream tasks, and are complementary to instance-level contrastive methods. These results demonstrate the strong potential of defining pretext tasks at the pixel level, and suggest a new path forward in unsupervised visual representation learning. Code is available at https://github.com/zdaxie/PixPro.

  • 6 authors
·
Nov 19, 2020

AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention

Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.

  • 9 authors
·
Jun 18, 2024

RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder

Existing object detection frameworks are usually built on a single format of object/part representation, i.e., anchor/proposal rectangle boxes in RetinaNet and Faster R-CNN, center points in FCOS and RepPoints, and corner points in CornerNet. While these different representations usually drive the frameworks to perform well in different aspects, e.g., better classification or finer localization, it is in general difficult to combine these representations in a single framework to make good use of each strength, due to the heterogeneous or non-grid feature extraction by different representations. This paper presents an attention-based decoder module similar as that in Transformer~vaswani2017attention to bridge other representations into a typical object detector built on a single representation format, in an end-to-end fashion. The other representations act as a set of key instances to strengthen the main query representation features in the vanilla detectors. Novel techniques are proposed towards efficient computation of the decoder module, including a key sampling approach and a shared location embedding approach. The proposed module is named bridging visual representations (BVR). It can perform in-place and we demonstrate its broad effectiveness in bridging other representations into prevalent object detection frameworks, including RetinaNet, Faster R-CNN, FCOS and ATSS, where about 1.5sim3.0 AP improvements are achieved. In particular, we improve a state-of-the-art framework with a strong backbone by about 2.0 AP, reaching 52.7 AP on COCO test-dev. The resulting network is named RelationNet++. The code will be available at https://github.com/microsoft/RelationNet2.

  • 3 authors
·
Oct 29, 2020

Unsupervised learning of foreground object detection

Unsupervised learning poses one of the most difficult challenges in computer vision today. The task has an immense practical value with many applications in artificial intelligence and emerging technologies, as large quantities of unlabeled videos can be collected at relatively low cost. In this paper, we address the unsupervised learning problem in the context of detecting the main foreground objects in single images. We train a student deep network to predict the output of a teacher pathway that performs unsupervised object discovery in videos or large image collections. Our approach is different from published methods on unsupervised object discovery. We move the unsupervised learning phase during training time, then at test time we apply the standard feed-forward processing along the student pathway. This strategy has the benefit of allowing increased generalization possibilities during training, while remaining fast at testing. Our unsupervised learning algorithm can run over several generations of student-teacher training. Thus, a group of student networks trained in the first generation collectively create the teacher at the next generation. In experiments our method achieves top results on three current datasets for object discovery in video, unsupervised image segmentation and saliency detection. At test time the proposed system is fast, being one to two orders of magnitude faster than published unsupervised methods.

  • 3 authors
·
Aug 14, 2018

PEEKABOO: Hiding parts of an image for unsupervised object localization

Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information such as the appearance, type and number of objects, as well as the lack of labeled object classes typically available in supervised settings. While recent approaches to unsupervised object localization have demonstrated significant progress by leveraging self-supervised visual representations, they often require computationally intensive training processes, resulting in high resource demands in terms of computation, learnable parameters, and data. They also lack explicit modeling of visual context, potentially limiting their accuracy in object localization. To tackle these challenges, we propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization by learning context-based representations at both the pixel- and shape-level of the localized objects through image masking. The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision. The experimental results, both quantitative and qualitative, across various benchmark datasets, demonstrate the simplicity, effectiveness and competitive performance of our approach compared to state-of-the-art methods in both single object discovery and unsupervised salient object detection tasks. Code and pre-trained models are available at: https://github.com/hasibzunair/peekaboo

  • 2 authors
·
Jul 24, 2024

Object-Focused Data Selection for Dense Prediction Tasks

Dense prediction tasks such as object detection and segmentation require high-quality labels at pixel level, which are costly to obtain. Recent advances in foundation models have enabled the generation of autolabels, which we find to be competitive but not yet sufficient to fully replace human annotations, especially for more complex datasets. Thus, we consider the challenge of selecting a representative subset of images for labeling from a large pool of unlabeled images under a constrained annotation budget. This task is further complicated by imbalanced class distributions, as rare classes are often underrepresented in selected subsets. We propose object-focused data selection (OFDS) which leverages object-level representations to ensure that the selected image subsets semantically cover the target classes, including rare ones. We validate OFDS on PASCAL VOC and Cityscapes for object detection and semantic segmentation tasks. Our experiments demonstrate that prior methods which employ image-level representations fail to consistently outperform random selection. In contrast, OFDS consistently achieves state-of-the-art performance with substantial improvements over all baselines in scenarios with imbalanced class distributions. Moreover, we demonstrate that pre-training with autolabels on the full datasets before fine-tuning on human-labeled subsets selected by OFDS further enhances the final performance.

  • 5 authors
·
Dec 13, 2024

Grounding DINO 1.5: Advance the "Edge" of Open-Set Object Detection

This paper introduces Grounding DINO 1.5, a suite of advanced open-set object detection models developed by IDEA Research, which aims to advance the "Edge" of open-set object detection. The suite encompasses two models: Grounding DINO 1.5 Pro, a high-performance model designed for stronger generalization capability across a wide range of scenarios, and Grounding DINO 1.5 Edge, an efficient model optimized for faster speed demanded in many applications requiring edge deployment. The Grounding DINO 1.5 Pro model advances its predecessor by scaling up the model architecture, integrating an enhanced vision backbone, and expanding the training dataset to over 20 million images with grounding annotations, thereby achieving a richer semantic understanding. The Grounding DINO 1.5 Edge model, while designed for efficiency with reduced feature scales, maintains robust detection capabilities by being trained on the same comprehensive dataset. Empirical results demonstrate the effectiveness of Grounding DINO 1.5, with the Grounding DINO 1.5 Pro model attaining a 54.3 AP on the COCO detection benchmark and a 55.7 AP on the LVIS-minival zero-shot transfer benchmark, setting new records for open-set object detection. Furthermore, the Grounding DINO 1.5 Edge model, when optimized with TensorRT, achieves a speed of 75.2 FPS while attaining a zero-shot performance of 36.2 AP on the LVIS-minival benchmark, making it more suitable for edge computing scenarios. Model examples and demos with API will be released at https://github.com/IDEA-Research/Grounding-DINO-1.5-API

  • 16 authors
·
May 16, 2024 2

Unsupervised and semi-supervised co-salient object detection via segmentation frequency statistics

In this paper, we address the detection of co-occurring salient objects (CoSOD) in an image group using frequency statistics in an unsupervised manner, which further enable us to develop a semi-supervised method. While previous works have mostly focused on fully supervised CoSOD, less attention has been allocated to detecting co-salient objects when limited segmentation annotations are available for training. Our simple yet effective unsupervised method US-CoSOD combines the object co-occurrence frequency statistics of unsupervised single-image semantic segmentations with salient foreground detections using self-supervised feature learning. For the first time, we show that a large unlabeled dataset e.g. ImageNet-1k can be effectively leveraged to significantly improve unsupervised CoSOD performance. Our unsupervised model is a great pre-training initialization for our semi-supervised model SS-CoSOD, especially when very limited labeled data is available for training. To avoid propagating erroneous signals from predictions on unlabeled data, we propose a confidence estimation module to guide our semi-supervised training. Extensive experiments on three CoSOD benchmark datasets show that both of our unsupervised and semi-supervised models outperform the corresponding state-of-the-art models by a significant margin (e.g., on the Cosal2015 dataset, our US-CoSOD model has an 8.8% F-measure gain over a SOTA unsupervised co-segmentation model and our SS-CoSOD model has an 11.81% F-measure gain over a SOTA semi-supervised CoSOD model).

  • 5 authors
·
Nov 11, 2023

PropVG: End-to-End Proposal-Driven Visual Grounding with Multi-Granularity Discrimination

Recent advances in visual grounding have largely shifted away from traditional proposal-based two-stage frameworks due to their inefficiency and high computational complexity, favoring end-to-end direct reference paradigms. However, these methods rely exclusively on the referred target for supervision, overlooking the potential benefits of prominent prospective targets. Moreover, existing approaches often fail to incorporate multi-granularity discrimination, which is crucial for robust object identification in complex scenarios. To address these limitations, we propose PropVG, an end-to-end proposal-based framework that, to the best of our knowledge, is the first to seamlessly integrate foreground object proposal generation with referential object comprehension without requiring additional detectors. Furthermore, we introduce a Contrastive-based Refer Scoring (CRS) module, which employs contrastive learning at both sentence and word levels to enhance the capability in understanding and distinguishing referred objects. Additionally, we design a Multi-granularity Target Discrimination (MTD) module that fuses object- and semantic-level information to improve the recognition of absent targets. Extensive experiments on gRefCOCO (GREC/GRES), Ref-ZOM, R-RefCOCO, and RefCOCO (REC/RES) benchmarks demonstrate the effectiveness of PropVG. The codes and models are available at https://github.com/Dmmm1997/PropVG.

  • 7 authors
·
Sep 5

Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space

Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. (2016) showed one interesting way to synthesize novel images by performing gradient ascent in the latent space of a generator network to maximize the activations of one or multiple neurons in a separate classifier network. In this paper we extend this method by introducing an additional prior on the latent code, improving both sample quality and sample diversity, leading to a state-of-the-art generative model that produces high quality images at higher resolutions (227x227) than previous generative models, and does so for all 1000 ImageNet categories. In addition, we provide a unified probabilistic interpretation of related activation maximization methods and call the general class of models "Plug and Play Generative Networks". PPGNs are composed of 1) a generator network G that is capable of drawing a wide range of image types and 2) a replaceable "condition" network C that tells the generator what to draw. We demonstrate the generation of images conditioned on a class (when C is an ImageNet or MIT Places classification network) and also conditioned on a caption (when C is an image captioning network). Our method also improves the state of the art of Multifaceted Feature Visualization, which generates the set of synthetic inputs that activate a neuron in order to better understand how deep neural networks operate. Finally, we show that our model performs reasonably well at the task of image inpainting. While image models are used in this paper, the approach is modality-agnostic and can be applied to many types of data.

  • 5 authors
·
Nov 30, 2016

InstructDET: Diversifying Referring Object Detection with Generalized Instructions

We propose InstructDET, a data-centric method for referring object detection (ROD) that localizes target objects based on user instructions. While deriving from referring expressions (REC), the instructions we leverage are greatly diversified to encompass common user intentions related to object detection. For one image, we produce tremendous instructions that refer to every single object and different combinations of multiple objects. Each instruction and its corresponding object bounding boxes (bbxs) constitute one training data pair. In order to encompass common detection expressions, we involve emerging vision-language model (VLM) and large language model (LLM) to generate instructions guided by text prompts and object bbxs, as the generalizations of foundation models are effective to produce human-like expressions (e.g., describing object property, category, and relationship). We name our constructed dataset as InDET. It contains images, bbxs and generalized instructions that are from foundation models. Our InDET is developed from existing REC datasets and object detection datasets, with the expanding potential that any image with object bbxs can be incorporated through using our InstructDET method. By using our InDET dataset, we show that a conventional ROD model surpasses existing methods on standard REC datasets and our InDET test set. Our data-centric method InstructDET, with automatic data expansion by leveraging foundation models, directs a promising field that ROD can be greatly diversified to execute common object detection instructions.

  • 11 authors
·
Oct 8, 2023

Relative representations enable zero-shot latent space communication

Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, the angles between the encodings within distinct latent spaces do not change. In this work, we propose the latent similarity between each sample and a fixed set of anchors as an alternative data representation, demonstrating that it can enforce the desired invariances without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, invariance to latent isometries and rescalings, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).

  • 6 authors
·
Sep 30, 2022

CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection

Incremental object detection (IOD) is challenged by background shift, where background categories in sequential data may include previously learned or future classes. Inspired by the vision-language foundation models such as CLIP, these models capture shared attributes from extensive image-text paired data during pre-training. We propose a novel method utilizing attributes in vision-language foundation models for incremental object detection. Our method constructs a Class-Agnostic Shared Attribute base (CASA) to capture common semantic information among incremental classes. Specifically, we utilize large language models to generate candidate textual attributes and select the most relevant ones based on current training data, recording their significance in an attribute assignment matrix. For subsequent tasks, we freeze the retained attributes and continue selecting from the remaining candidates while updating the attribute assignment matrix accordingly. Furthermore, we employ OWL-ViT as our baseline, preserving the original parameters of the pre-trained foundation model. Our method adds only 0.7% to parameter storage through parameter-efficient fine-tuning to significantly enhance the scalability and adaptability of IOD. Extensive two-phase and multi-phase experiments on the COCO dataset demonstrate the state-of-the-art performance of our proposed method.

  • 5 authors
·
Oct 8, 2024

Open-vocabulary Object Detection via Vision and Language Knowledge Distillation

We aim at advancing open-vocabulary object detection, which detects objects described by arbitrary text inputs. The fundamental challenge is the availability of training data. It is costly to further scale up the number of classes contained in existing object detection datasets. To overcome this challenge, we propose ViLD, a training method via Vision and Language knowledge Distillation. Our method distills the knowledge from a pretrained open-vocabulary image classification model (teacher) into a two-stage detector (student). Specifically, we use the teacher model to encode category texts and image regions of object proposals. Then we train a student detector, whose region embeddings of detected boxes are aligned with the text and image embeddings inferred by the teacher. We benchmark on LVIS by holding out all rare categories as novel categories that are not seen during training. ViLD obtains 16.1 mask AP_r with a ResNet-50 backbone, even outperforming the supervised counterpart by 3.8. When trained with a stronger teacher model ALIGN, ViLD achieves 26.3 AP_r. The model can directly transfer to other datasets without finetuning, achieving 72.2 AP_{50} on PASCAL VOC, 36.6 AP on COCO and 11.8 AP on Objects365. On COCO, ViLD outperforms the previous state-of-the-art by 4.8 on novel AP and 11.4 on overall AP. Code and demo are open-sourced at https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild.

  • 4 authors
·
Apr 28, 2021

TopNet: Transformer-based Object Placement Network for Image Compositing

We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.

  • 6 authors
·
Apr 6, 2023