new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

PALBERT: Teaching ALBERT to Ponder

Currently, pre-trained models can be considered the default choice for a wide range of NLP tasks. Despite their SoTA results, there is practical evidence that these models may require a different number of computing layers for different input sequences, since evaluating all layers leads to overconfidence in wrong predictions (namely overthinking). This problem can potentially be solved by implementing adaptive computation time approaches, which were first designed to improve inference speed. Recently proposed PonderNet may be a promising solution for performing an early exit by treating the exit layer's index as a latent variable. However, the originally proposed exit criterion, relying on sampling from trained posterior distribution on the probability of exiting from the i-th layer, introduces major variance in exit layer indices, significantly reducing the resulting model's performance. In this paper, we propose improving PonderNet with a novel deterministic Q-exit criterion and a revisited model architecture. We adapted the proposed mechanism to ALBERT and RoBERTa and compared it with recent methods for performing an early exit. We observed that the proposed changes can be considered significant improvements on the original PonderNet architecture and outperform PABEE on a wide range of GLUE tasks. In addition, we also performed an in-depth ablation study of the proposed architecture to further understand Lambda layers and their performance.

  • 2 authors
·
Apr 7, 2022

DYNAMAX: Dynamic computing for Transformers and Mamba based architectures

Early exits (EEs) offer a promising approach to reducing computational costs and latency by dynamically terminating inference once a satisfactory prediction confidence on a data sample is achieved. Although many works integrate EEs into encoder-only Transformers, their application to decoder-only architectures and, more importantly, Mamba models, a novel family of state-space architectures in the LLM realm, remains insufficiently explored. This work introduces DYNAMAX, the first framework to exploit the unique properties of Mamba architectures for early exit mechanisms. We not only integrate EEs into Mamba but also repurpose Mamba as an efficient EE classifier for both Mamba-based and transformer-based LLMs, showcasing its versatility. Our experiments employ the Mistral 7B transformer compared to the Codestral 7B Mamba model, using data sets such as TruthfulQA, CoQA, and TriviaQA to evaluate computational savings, accuracy, and consistency. The results highlight the adaptability of Mamba as a powerful EE classifier and its efficiency in balancing computational cost and performance quality across NLP tasks. By leveraging Mamba's inherent design for dynamic processing, we open pathways for scalable and efficient inference in embedded applications and resource-constrained environments. This study underscores the transformative potential of Mamba in redefining dynamic computing paradigms for LLMs.

  • 3 authors
·
Apr 29 1

LYNX: Learning Dynamic Exits for Confidence-Controlled Reasoning

Large reasoning models achieve strong performance on complex tasks by generating extended chains of thought, but they often "overthink": continuing to reason long after they have enough information to answer correctly. This wastes inference-time compute and can hurt accuracy. Existing attempts to stop early either manipulate decoding with extra sampling and heuristics, rely on auxiliary verifier models, or operate only as post-hoc analysis pipelines without formal guarantees. We introduce LYNX, an online early-exit mechanism that turns a model's own hidden-state awareness into confidence-controlled stopping decisions. LYNX attaches exit decisions to naturally occurring reasoning cues (e.g., "hmm", "wait") during generation, trains a lightweight probe on hidden states at those cue tokens using supervision from forced exits, and wraps the resulting scores in split conformal prediction to obtain distribution-free control over premature exits. Crucially, we train and calibrate this probe once on a generic mathematical corpus and reuse it unchanged across benchmarks, decoding temperatures, and even non-mathematical tasks. Across three model families spanning 1.5B to 32B parameters, a single mathematically trained probe per base model yields strong accuracy--efficiency tradeoffs. On GSM8K, LYNX matches or improves baseline accuracy while reducing tokens by 40--65\%; on MATH-500 it improves accuracy by up to 12 points with roughly 35--60\% fewer tokens; on AIME 2024 it recovers baseline accuracy with more than 50\% token savings; and on CommonsenseQA, a non-math benchmark, it transfers zero-shot with modest accuracy gains and up to 70\% fewer tokens. Compared to state-of-the-art early-exit methods, LYNX offers competitive or superior Pareto frontiers while remaining fully online, requiring no proxy models at inference, and providing explicit, user-tunable confidence guarantees.

Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN

Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities.

  • 3 authors
·
Oct 13, 2023