new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 12

Can We Recycle Our Old Models? An Empirical Evaluation of Model Selection Mechanisms for AIOps Solutions

AIOps (Artificial Intelligence for IT Operations) solutions leverage the tremendous amount of data produced during the operation of large-scale systems and machine learning models to assist software practitioners in their system operations. Existing AIOps solutions usually maintain AIOps models against concept drift through periodical retraining, despite leaving a pile of discarded historical models that may perform well on specific future data. Other prior works propose dynamically selecting models for prediction tasks from a set of candidate models to optimize the model performance. However, there is no prior work in the AIOps area that assesses the use of model selection mechanisms on historical models to improve model performance or robustness. To fill the gap, we evaluate several model selection mechanisms by assessing their capabilities in selecting the optimal AIOps models that were built in the past to make predictions for the target data. We performed a case study on three large-scale public operation datasets: two trace datasets from the cloud computing platforms of Google and Alibaba, and one disk stats dataset from the BackBlaze cloud storage data center. We observe that the model selection mechnisms utilizing temporal adjacency tend to have a better performance and can prevail the periodical retraining approach. Our findings also highlight a performance gap between existing model selection mechnisms and the theoretical upper bound which may motivate future researchers and practitioners in investigating more efficient and effective model selection mechanisms that fit in the context of AIOps.

  • 4 authors
·
May 5

Large Language Models are not Fair Evaluators

In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.

  • 10 authors
·
May 29, 2023

Capability Instruction Tuning: A New Paradigm for Dynamic LLM Routing

Large Language Models (LLMs) have demonstrated human-like instruction-following abilities, particularly those exceeding 100 billion parameters. The combined capability of some smaller, resource-friendly LLMs can address most of the instructions that larger LLMs excel at. In this work, we explore how to route the best-performing LLM for each instruction to achieve better overall performance. We develop a new paradigm, constructing capability instructions with model capability representation, user instruction, and performance inquiry prompts to assess the performance. To learn from capability instructions, we introduce a new end-to-end framework called Model Selection with Aptitude Test (Model-SAT), which generates positive and negative samples based on what different models perform well or struggle with. Model-SAT uses a model capability encoder that extends its model representation to a lightweight LLM. Our experiments show that Model-SAT understands the performance dimensions of candidate models and provides the probabilities of their capability to handle various instructions. Additionally, during deployment, a new model can quickly infer its aptitude test results across 50 tasks, each with 20 shots. Model-SAT performs state-of-the-art model routing without candidate inference and in real-world new model-released scenarios. The code is available at https://github.com/Now-Join-Us/CIT-LLM-Routing

  • 3 authors
·
Feb 24

What Makes a Face Look like a Hat: Decoupling Low-level and High-level Visual Properties with Image Triplets

In visual decision making, high-level features, such as object categories, have a strong influence on choice. However, the impact of low-level features on behavior is less understood partly due to the high correlation between high- and low-level features in the stimuli presented (e.g., objects of the same category are more likely to share low-level features). To disentangle these effects, we propose a method that de-correlates low- and high-level visual properties in a novel set of stimuli. Our method uses two Convolutional Neural Networks (CNNs) as candidate models of the ventral visual stream: the CORnet-S that has high neural predictivity in high-level, IT-like responses and the VGG-16 that has high neural predictivity in low-level responses. Triplets (root, image1, image2) of stimuli are parametrized by the level of low- and high-level similarity of images extracted from the different layers. These stimuli are then used in a decision-making task where participants are tasked to choose the most similar-to-the-root image. We found that different networks show differing abilities to predict the effects of low-versus-high-level similarity: while CORnet-S outperforms VGG-16 in explaining human choices based on high-level similarity, VGG-16 outperforms CORnet-S in explaining human choices based on low-level similarity. Using Brain-Score, we observed that the behavioral prediction abilities of different layers of these networks qualitatively corresponded to their ability to explain neural activity at different levels of the visual hierarchy. In summary, our algorithm for stimulus set generation enables the study of how different representations in the visual stream affect high-level cognitive behaviors.

  • 4 authors
·
Sep 3, 2024

Tracing the Origin of Adversarial Attack for Forensic Investigation and Deterrence

Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy M_i and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source M_i. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.

  • 6 authors
·
Dec 30, 2022

Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization

Model selection/optimization in conformal inference is challenging, since it may break the exchangeability between labeled and unlabeled data. We study this problem in the context of conformal selection, which uses conformal p-values to select ``interesting'' instances with large unobserved labels from a pool of unlabeled data, while controlling the FDR in finite sample. For validity, existing solutions require the model choice to be independent of the data used to construct the p-values and calibrate the selection set. However, when presented with many model choices and limited labeled data, it is desirable to (i) select the best model in a data-driven manner, and (ii) mitigate power loss due to sample splitting. This paper presents OptCS, a general framework that allows valid statistical testing (selection) after flexible data-driven model optimization. We introduce general conditions under which OptCS constructs valid conformal p-values despite substantial data reuse and handles complex p-value dependencies to maintain finite-sample FDR control via a novel multiple testing procedure. We instantiate this general recipe to propose three FDR-controlling procedures, each optimizing the models differently: (i) selecting the most powerful one among multiple pre-trained candidate models, (ii) using all data for model fitting without sample splitting, and (iii) combining full-sample model fitting and selection. We demonstrate the efficacy of our methods via simulation studies and real applications in drug discovery and alignment of large language models in radiology report generation.

  • 2 authors
·
Nov 26, 2024

Avoiding tipping points in fisheries management through Gaussian Process Dynamic Programming

Model uncertainty and limited data are fundamental challenges to robust management of human intervention in a natural system. These challenges are acutely highlighted by concerns that many ecological systems may contain tipping points, such as Allee population sizes. Before a collapse, we do not know where the tipping points lie, if they exist at all. Hence, we know neither a complete model of the system dynamics nor do we have access to data in some large region of state-space where such a tipping point might exist. We illustrate how a Bayesian Non-Parametric (BNP) approach using a Gaussian Process (GP) prior provides a flexible representation of this inherent uncertainty. We embed GPs in a Stochastic Dynamic Programming (SDP) framework in order to make robust management predictions with both model uncertainty and limited data. We use simulations to evaluate this approach as compared with the standard approach of using model selection to choose from a set of candidate models. We find that model selection erroneously favors models without tipping points -- leading to harvest policies that guarantee extinction. The GPDP performs nearly as well as the true model and significantly outperforms standard approaches. We illustrate this using examples of simulated single-species dynamics, where the standard model selection approach should be most effective, and find that it still fails to account for uncertainty appropriately and leads to population crashes, while management based on the GPDP does not, since it does not underestimate the uncertainty outside of the observed data.

  • 3 authors
·
Dec 27, 2014

FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization

Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models. Our code is open-sourced at github.com/hmarkc/FW-Merging.

  • 5 authors
·
Mar 16

You Only Submit One Image to Find the Most Suitable Generative Model

Deep generative models have achieved promising results in image generation, and various generative model hubs, e.g., Hugging Face and Civitai, have been developed that enable model developers to upload models and users to download models. However, these model hubs lack advanced model management and identification mechanisms, resulting in users only searching for models through text matching, download sorting, etc., making it difficult to efficiently find the model that best meets user requirements. In this paper, we propose a novel setting called Generative Model Identification (GMI), which aims to enable the user to identify the most appropriate generative model(s) for the user's requirements from a large number of candidate models efficiently. To our best knowledge, it has not been studied yet. In this paper, we introduce a comprehensive solution consisting of three pivotal modules: a weighted Reduced Kernel Mean Embedding (RKME) framework for capturing the generated image distribution and the relationship between images and prompts, a pre-trained vision-language model aimed at addressing dimensionality challenges, and an image interrogator designed to tackle cross-modality issues. Extensive empirical results demonstrate the proposal is both efficient and effective. For example, users only need to submit a single example image to describe their requirements, and the model platform can achieve an average top-4 identification accuracy of more than 80%.

  • 4 authors
·
Dec 16, 2024

RegMean++: Enhancing Effectiveness and Generalization of Regression Mean for Model Merging

Regression Mean (RegMean), an approach that formulates model merging as a linear regression problem, aims to find the optimal weights for each linear layer in the merge model by minimizing the discrepancy in predictions between the merge and candidate models. RegMean provides a precise closed-form solution for the merging problem; therefore, it offers explainability and computational efficiency. However, RegMean merges each linear layer independently, overlooking how the features and information in the earlier layers propagate through the layers and influence the final prediction in the merge model. In this paper, we introduce RegMean++, a simple yet effective alternative to RegMean, that explicitly incorporates both intra- and cross-layer dependencies between merge models' layers into RegMean's objective. By accounting for these dependencies, RegMean++ better captures the behaviors of the merge model. Extensive experiments demonstrate that RegMean++ consistently outperforms RegMean across diverse settings, including in-domain (ID) and out-of-domain (OOD) generalization, sequential merging, large-scale tasks, and robustness under several types of distribution shifts. Furthermore, RegMean++ achieves competitive or state-of-the-art performance compared to various recent advanced model merging methods. Our code is available at https://github.com/nthehai01/RegMean-plusplus.

  • 4 authors
·
Aug 5

Bidirectional Likelihood Estimation with Multi-Modal Large Language Models for Text-Video Retrieval

Text-Video Retrieval aims to find the most relevant text (or video) candidate given a video (or text) query from large-scale online databases. Recent work leverages multi-modal large language models (MLLMs) to improve retrieval, especially for long or complex query-candidate pairs. However, we observe that the naive application of MLLMs, i.e., retrieval based on candidate likelihood, introduces candidate prior bias, favoring candidates with inherently higher priors over those more relevant to the query. To this end, we propose a novel retrieval framework, Bidirectional Likelihood Estimation with MLLM (BLiM), which leverages both query and candidate likelihoods by training the model to generate text from a given video as well as video features from a given text. Furthermore, we introduce Candidate Prior Normalization (CPN), a simple yet effective training-free score calibration module designed to mitigate candidate prior bias in candidate likelihood. On four Text-Video Retrieval benchmarks, our BLiM equipped with CPN outperforms previous state-of-the-art models by 6.4 R@1 on average, effectively alleviating candidate prior bias and emphasizing query-candidate relevance. Our in-depth analysis across various multi-modal tasks beyond retrieval highlights the broad applicability of CPN which enhances visual understanding by reducing reliance on textual priors. Code is available at https://github.com/mlvlab/BLiM.

  • 5 authors
·
Jul 31 2

RegMix: Data Mixture as Regression for Language Model Pre-training

The data mixture for large language model pre-training significantly impacts performance, yet how to determine an effective mixture remains unclear. We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task. RegMix involves training a set of small models with diverse data mixtures and fitting a regression model to predict their performance given their respective mixtures. With the fitted regression model, we simulate the top-ranked mixture and use it to train a large-scale model with orders of magnitude more compute. To empirically validate RegMix, we train 512 models with 1M parameters for 1B tokens of different mixtures to fit the regression model and find the optimal mixture. Using this mixture we train a 1B parameter model for 25B tokens (i.e. 1000x larger and 25x longer) which we find performs best among 64 candidate 1B parameter models with other mixtures. Further, our method demonstrates superior performance compared to human selection and achieves results that match or surpass DoReMi, while utilizing only 10% of the compute budget. Our experiments also show that (1) Data mixtures significantly impact performance with single-task performance variations of up to 14.6%; (2) Web corpora rather than data perceived as high-quality like Wikipedia have the strongest positive correlation with downstream performance; (3) Domains interact in complex ways often contradicting common sense, thus automatic approaches like RegMix are needed; (4) Data mixture effects transcend scaling laws, and our approach captures the complexity by considering all domains together. Our code is available at https://github.com/sail-sg/regmix.

  • 8 authors
·
Jul 1, 2024 7

xPQA: Cross-Lingual Product Question Answering across 12 Languages

Product Question Answering (PQA) systems are key in e-commerce applications to provide responses to customers' questions as they shop for products. While existing work on PQA focuses mainly on English, in practice there is need to support multiple customer languages while leveraging product information available in English. To study this practical industrial task, we present xPQA, a large-scale annotated cross-lingual PQA dataset in 12 languages across 9 branches, and report results in (1) candidate ranking, to select the best English candidate containing the information to answer a non-English question; and (2) answer generation, to generate a natural-sounding non-English answer based on the selected English candidate. We evaluate various approaches involving machine translation at runtime or offline, leveraging multilingual pre-trained LMs, and including or excluding xPQA training data. We find that (1) In-domain data is essential as cross-lingual rankers trained on other domains perform poorly on the PQA task; (2) Candidate ranking often prefers runtime-translation approaches while answer generation prefers multilingual approaches; (3) Translating offline to augment multilingual models helps candidate ranking mainly on languages with non-Latin scripts; and helps answer generation mainly on languages with Latin scripts. Still, there remains a significant performance gap between the English and the cross-lingual test sets.

  • 4 authors
·
May 16, 2023

ImagineNav: Prompting Vision-Language Models as Embodied Navigator through Scene Imagination

Visual navigation is an essential skill for home-assistance robots, providing the object-searching ability to accomplish long-horizon daily tasks. Many recent approaches use Large Language Models (LLMs) for commonsense inference to improve exploration efficiency. However, the planning process of LLMs is limited within texts and it is difficult to represent the spatial occupancy and geometry layout only by texts. Both are important for making rational navigation decisions. In this work, we seek to unleash the spatial perception and planning ability of Vision-Language Models (VLMs), and explore whether the VLM, with only on-board camera captured RGB/RGB-D stream inputs, can efficiently finish the visual navigation tasks in a mapless manner. We achieve this by developing the imagination-powered navigation framework ImagineNav, which imagines the future observation images at valuable robot views and translates the complex navigation planning process into a rather simple best-view image selection problem for VLM. To generate appropriate candidate robot views for imagination, we introduce the Where2Imagine module, which is distilled to align with human navigation habits. Finally, to reach the VLM preferred views, an off-the-shelf point-goal navigation policy is utilized. Empirical experiments on the challenging open-vocabulary object navigation benchmarks demonstrates the superiority of our proposed system.

  • 4 authors
·
Oct 13, 2024

Early Timestep Zero-Shot Candidate Selection for Instruction-Guided Image Editing

Despite recent advances in diffusion models, achieving reliable image generation and editing remains challenging due to the inherent diversity induced by stochastic noise in the sampling process. Instruction-guided image editing with diffusion models offers user-friendly capabilities, yet editing failures, such as background distortion, frequently occur. Users often resort to trial and error, adjusting seeds or prompts to achieve satisfactory results, which is inefficient. While seed selection methods exist for Text-to-Image (T2I) generation, they depend on external verifiers, limiting applicability, and evaluating multiple seeds increases computational complexity. To address this, we first establish a multiple-seed-based image editing baseline using background consistency scores, achieving Best-of-N performance without supervision. Building on this, we introduce ELECT (Early-timestep Latent Evaluation for Candidate Selection), a zero-shot framework that selects reliable seeds by estimating background mismatches at early diffusion timesteps, identifying the seed that retains the background while modifying only the foreground. ELECT ranks seed candidates by a background inconsistency score, filtering unsuitable samples early based on background consistency while preserving editability. Beyond standalone seed selection, ELECT integrates into instruction-guided editing pipelines and extends to Multimodal Large-Language Models (MLLMs) for joint seed and prompt selection, further improving results when seed selection alone is insufficient. Experiments show that ELECT reduces computational costs (by 41 percent on average and up to 61 percent) while improving background consistency and instruction adherence, achieving around 40 percent success rates in previously failed cases - without any external supervision or training.

  • 7 authors
·
Apr 18

ToolChain*: Efficient Action Space Navigation in Large Language Models with A* Search

Large language models (LLMs) have demonstrated powerful decision-making and planning capabilities in solving complicated real-world problems. LLM-based autonomous agents can interact with diverse tools (e.g., functional APIs) and generate solution plans that execute a series of API function calls in a step-by-step manner. The multitude of candidate API function calls significantly expands the action space, amplifying the critical need for efficient action space navigation. However, existing methods either struggle with unidirectional exploration in expansive action spaces, trapped into a locally optimal solution, or suffer from exhaustively traversing all potential actions, causing inefficient navigation. To address these issues, we propose ToolChain*, an efficient tree search-based planning algorithm for LLM-based agents. It formulates the entire action space as a decision tree, where each node represents a possible API function call involved in a solution plan. By incorporating the A* search algorithm with task-specific cost function design, it efficiently prunes high-cost branches that may involve incorrect actions, identifying the most low-cost valid path as the solution. Extensive experiments on multiple tool-use and reasoning tasks demonstrate that ToolChain* efficiently balances exploration and exploitation within an expansive action space. It outperforms state-of-the-art baselines on planning and reasoning tasks by 3.1% and 3.5% on average while requiring 7.35x and 2.31x less time, respectively.

  • 8 authors
·
Oct 19, 2023 1

Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks

Discovering novel drug candidate molecules is one of the most fundamental and critical steps in drug development. Generative deep learning models, which create synthetic data given a probability distribution, offer a high potential for designing de novo molecules. However, to be utilisable in real life drug development pipelines, these models should be able to design drug like and target centric molecules. In this study, we propose an end to end generative system, DrugGEN, for the de novo design of drug candidate molecules that interact with intended target proteins. The proposed method represents molecules as graphs and processes them via a generative adversarial network comprising graph transformer layers. The system is trained using a large dataset of drug like compounds and target specific bioactive molecules to design effective inhibitory molecules against the AKT1 protein, which is critically important in developing treatments for various types of cancer. We conducted molecular docking and dynamics to assess the target centric generation performance of the model, as well as attention score visualisation to examine model interpretability. In parallel, selected compounds were chemically synthesised and evaluated in the context of in vitro enzymatic assays, which identified two bioactive molecules that inhibited AKT1 at low micromolar concentrations. These results indicate that DrugGEN's de novo molecules have a high potential for interacting with the AKT1 protein at the level of its native ligands. Using the open access DrugGEN codebase, it is possible to easily train models for other druggable proteins, given a dataset of experimentally known bioactive molecules.

  • 10 authors
·
Feb 15, 2023

Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair

During Automated Program Repair (APR), it can be challenging to synthesize correct patches for real-world systems in general-purpose programming languages. Recent Large Language Models (LLMs) have been shown to be helpful "copilots" in assisting developers with various coding tasks, and have also been directly applied for patch synthesis. However, most LLMs treat programs as sequences of tokens, meaning that they are ignorant of the underlying semantics constraints of the target programming language. This results in plenty of statically invalid generated patches, impeding the practicality of the technique. Therefore, we propose Repilot, a framework to further copilot the AI "copilots" (i.e., LLMs) by synthesizing more valid patches during the repair process. Our key insight is that many LLMs produce outputs autoregressively (i.e., token by token), resembling human writing programs, which can be significantly boosted and guided through a Completion Engine. Repilot synergistically synthesizes a candidate patch through the interaction between an LLM and a Completion Engine, which 1) prunes away infeasible tokens suggested by the LLM and 2) proactively completes the token based on the suggestions provided by the Completion Engine. Our evaluation on a subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that Repilot fixes 66 and 50 bugs, respectively, surpassing the best-performing baseline by 14 and 16 bugs fixed. More importantly, Repilot is capable of producing more valid and correct patches than the base LLM when given the same generation budget.

  • 3 authors
·
Sep 1, 2023

Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling

The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.

  • 8 authors
·
Aug 16, 2024 2

AI in Lung Health: Benchmarking Detection and Diagnostic Models Across Multiple CT Scan Datasets

Lung cancer remains the leading cause of cancer-related mortality worldwide, and early detection through low-dose computed tomography (LDCT) has shown significant promise in reducing death rates. With the growing integration of artificial intelligence (AI) into medical imaging, the development and evaluation of robust AI models require access to large, well-annotated datasets. In this study, we introduce the utility of Duke Lung Cancer Screening (DLCS) Dataset, the largest open-access LDCT dataset with over 2,000 scans and 3,000 expert-verified nodules. We benchmark deep learning models for both 3D nodule detection and lung cancer classification across internal and external datasets including LUNA16, LUNA25, and NLST-3D+. For detection, we develop two MONAI-based RetinaNet models (DLCSDmD and LUNA16-mD), evaluated using the Competition Performance Metric (CPM). For classification, we compare five models, including state-of-the-art pretrained models (Models Genesis, Med3D), a selfsupervised foundation model (FMCB), a randomly initialized ResNet50, and proposed a novel Strategic Warm-Start++ (SWS++) model. SWS++ uses curated candidate patches to pretrain a classification backbone within the same detection pipeline, enabling task-relevant feature learning. Our models demonstrated strong generalizability, with SWS++ achieving comparable or superior performance to existing foundational models across multiple datasets (AUC: 0.71 to 0.90). All code, models, and data are publicly released to promote reproducibility and collaboration. This work establishes a standardized benchmarking resource for lung cancer AI research, supporting future efforts in model development, validation, and clinical translation.

  • 7 authors
·
May 7, 2024

On Relation-Specific Neurons in Large Language Models

In large language models (LLMs), certain neurons can store distinct pieces of knowledge learned during pretraining. While knowledge typically appears as a combination of relations and entities, it remains unclear whether some neurons focus on a relation itself -- independent of any entity. We hypothesize such neurons detect a relation in the input text and guide generation involving such a relation. To investigate this, we study the Llama-2 family on a chosen set of relations with a statistics-based method. Our experiments demonstrate the existence of relation-specific neurons. We measure the effect of selectively deactivating candidate neurons specific to relation r on the LLM's ability to handle (1) facts whose relation is r and (2) facts whose relation is a different relation r' neq r. With respect to their capacity for encoding relation information, we give evidence for the following three properties of relation-specific neurons. (i) Neuron cumulativity. The neurons for r present a cumulative effect so that deactivating a larger portion of them results in the degradation of more facts in r. (ii) Neuron versatility. Neurons can be shared across multiple closely related as well as less related relations. Some relation neurons transfer across languages. (iii) Neuron interference. Deactivating neurons specific to one relation can improve LLM generation performance for facts of other relations. We will make our code publicly available at https://github.com/cisnlp/relation-specific-neurons.

  • 9 authors
·
Feb 24 2

Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting

Ranking documents using Large Language Models (LLMs) by directly feeding the query and candidate documents into the prompt is an interesting and practical problem. However, there has been limited success so far, as researchers have found it difficult to outperform fine-tuned baseline rankers on benchmark datasets. We analyze pointwise and listwise ranking prompts used by existing methods and argue that off-the-shelf LLMs do not fully understand these ranking formulations, possibly due to the nature of how LLMs are trained. In this paper, we propose to significantly reduce the burden on LLMs by using a new technique called Pairwise Ranking Prompting (PRP). Our results are the first in the literature to achieve state-of-the-art ranking performance on standard benchmarks using moderate-sized open-sourced LLMs. On TREC-DL2020, PRP based on the Flan-UL2 model with 20B parameters outperforms the previous best approach in the literature, which is based on the blackbox commercial GPT-4 that has 50x (estimated) model size, by over 5% at NDCG@1. On TREC-DL2019, PRP is only inferior to the GPT-4 solution on the NDCG@5 and NDCG@10 metrics, while outperforming other existing solutions, such as InstructGPT which has 175B parameters, by over 10% for nearly all ranking metrics. Furthermore, we propose several variants of PRP to improve efficiency and show that it is possible to achieve competitive results even with linear complexity. We also discuss other benefits of PRP, such as supporting both generation and scoring LLM APIs, as well as being insensitive to input ordering.

  • 11 authors
·
Jun 30, 2023

A Survey on Data Selection for Language Models

A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.

  • 14 authors
·
Feb 26, 2024

Rare Disease Differential Diagnosis with Large Language Models at Scale: From Abdominal Actinomycosis to Wilson's Disease

Large language models (LLMs) have demonstrated impressive capabilities in disease diagnosis. However, their effectiveness in identifying rarer diseases, which are inherently more challenging to diagnose, remains an open question. Rare disease performance is critical with the increasing use of LLMs in healthcare settings. This is especially true if a primary care physician needs to make a rarer prognosis from only a patient conversation so that they can take the appropriate next step. To that end, several clinical decision support systems are designed to support providers in rare disease identification. Yet their utility is limited due to their lack of knowledge of common disorders and difficulty of use. In this paper, we propose RareScale to combine the knowledge LLMs with expert systems. We use jointly use an expert system and LLM to simulate rare disease chats. This data is used to train a rare disease candidate predictor model. Candidates from this smaller model are then used as additional inputs to black-box LLM to make the final differential diagnosis. Thus, RareScale allows for a balance between rare and common diagnoses. We present results on over 575 rare diseases, beginning with Abdominal Actinomycosis and ending with Wilson's Disease. Our approach significantly improves the baseline performance of black-box LLMs by over 17% in Top-5 accuracy. We also find that our candidate generation performance is high (e.g. 88.8% on gpt-4o generated chats).

  • 3 authors
·
Feb 20 2

Leveraging Generative Models for Real-Time Query-Driven Text Summarization in Large-Scale Web Search

In the dynamic landscape of large-scale web search, Query-Driven Text Summarization (QDTS) aims to generate concise and informative summaries from textual documents based on a given query, which is essential for improving user engagement and facilitating rapid decision-making. Traditional extractive summarization models, based primarily on ranking candidate summary segments, have been the dominant approach in industrial applications. However, these approaches suffer from two key limitations: 1) The multi-stage pipeline often introduces cumulative information loss and architectural bottlenecks due to its weakest component; 2) Traditional models lack sufficient semantic understanding of both user queries and documents, particularly when dealing with complex search intents. In this study, we propose a novel framework to pioneer the application of generative models to address real-time QDTS in industrial web search. Our approach integrates large model distillation, supervised fine-tuning, direct preference optimization, and lookahead decoding to transform a lightweight model with only 0.1B parameters into a domain-specialized QDTS expert. Evaluated on multiple industry-relevant metrics, our model outperforms the production baseline and achieves a new state of the art. Furthermore, it demonstrates excellent deployment efficiency, requiring only 334 NVIDIA L20 GPUs to handle \textasciitilde50,000 queries per second under 55~ms average latency per query.

  • 7 authors
·
Aug 28

Language-Image Models with 3D Understanding

Multi-modal large language models (MLLMs) have shown incredible capabilities in a variety of 2D vision and language tasks. We extend MLLMs' perceptual capabilities to ground and reason about images in 3-dimensional space. To that end, we first develop a large-scale pre-training dataset for 2D and 3D called LV3D by combining multiple existing 2D and 3D recognition datasets under a common task formulation: as multi-turn question-answering. Next, we introduce a new MLLM named Cube-LLM and pre-train it on LV3D. We show that pure data scaling makes a strong 3D perception capability without 3D specific architectural design or training objective. Cube-LLM exhibits intriguing properties similar to LLMs: (1) Cube-LLM can apply chain-of-thought prompting to improve 3D understanding from 2D context information. (2) Cube-LLM can follow complex and diverse instructions and adapt to versatile input and output formats. (3) Cube-LLM can be visually prompted such as 2D box or a set of candidate 3D boxes from specialists. Our experiments on outdoor benchmarks demonstrate that Cube-LLM significantly outperforms existing baselines by 21.3 points of AP-BEV on the Talk2Car dataset for 3D grounded reasoning and 17.7 points on the DriveLM dataset for complex reasoning about driving scenarios, respectively. Cube-LLM also shows competitive results in general MLLM benchmarks such as refCOCO for 2D grounding with (87.0) average score, as well as visual question answering benchmarks such as VQAv2, GQA, SQA, POPE, etc. for complex reasoning. Our project is available at https://janghyuncho.github.io/Cube-LLM.

  • 11 authors
·
May 6, 2024

TTSnap: Test-Time Scaling of Diffusion Models via Noise-Aware Pruning

A prominent approach to test-time scaling for text-to-image diffusion models formulates the problem as a search over multiple noise seeds, selecting the one that maximizes a certain image-reward function. The effectiveness of this strategy heavily depends on the number and diversity of noise seeds explored. However, verifying each candidate is computationally expensive, because each must be fully denoised before a reward can be computed. This severely limits the number of samples that can be explored under a fixed budget. We propose test-time scaling with noise-aware pruning (TTSnap), a framework that prunes low-quality candidates without fully denoising them. The key challenge is that reward models are learned in the clean image domain, and the ranking of rewards predicted for intermediate estimates are often inconsistent with those predicted for clean images. To overcome this, we train noise-aware reward models via self-distillation to align the reward for intermediate estimates with that of the final clean images. To stabilize learning across different noise levels, we adopt a curriculum training strategy that progressively shifts the data domain from clean images to noise images. In addition, we introduce a new metric that measures reward alignment and computational budget utilization. Experiments demonstrate that our approach improves performance by over 16\% compared with existing methods, enabling more efficient and effective test-time scaling. It also provides orthogonal gains when combined with post-training techniques and local test-time optimization. Code: https://github.com/TerrysLearning/TTSnap/.

  • 9 authors
·
Nov 27

Large Language Models to Enhance Bayesian Optimization

Bayesian optimization (BO) is a powerful approach for optimizing complex and expensive-to-evaluate black-box functions. Its importance is underscored in many applications, notably including hyperparameter tuning, but its efficacy depends on efficiently balancing exploration and exploitation. While there has been substantial progress in BO methods, striking this balance remains a delicate process. In this light, we present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within BO. At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations. More specifically, we explore how combining contextual understanding, few-shot learning proficiency, and domain knowledge of LLMs can improve model-based BO. Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse. Our approach is performed in context and does not require LLM finetuning. Additionally, it is modular by design, allowing individual components to be integrated into existing BO frameworks, or function cohesively as an end-to-end method. We empirically validate LLAMBO's efficacy on the problem of hyperparameter tuning, highlighting strong empirical performance across a range of diverse benchmarks, proprietary, and synthetic tasks.

  • 4 authors
·
Feb 6, 2024

A Comprehensive Review on Harnessing Large Language Models to Overcome Recommender System Challenges

Recommender systems have traditionally followed modular architectures comprising candidate generation, multi-stage ranking, and re-ranking, each trained separately with supervised objectives and hand-engineered features. While effective in many domains, such systems face persistent challenges including sparse and noisy interaction data, cold-start problems, limited personalization depth, and inadequate semantic understanding of user and item content. The recent emergence of Large Language Models (LLMs) offers a new paradigm for addressing these limitations through unified, language-native mechanisms that can generalize across tasks, domains, and modalities. In this paper, we present a comprehensive technical survey of how LLMs can be leveraged to tackle key challenges in modern recommender systems. We examine the use of LLMs for prompt-driven candidate retrieval, language-native ranking, retrieval-augmented generation (RAG), and conversational recommendation, illustrating how these approaches enhance personalization, semantic alignment, and interpretability without requiring extensive task-specific supervision. LLMs further enable zero- and few-shot reasoning, allowing systems to operate effectively in cold-start and long-tail scenarios by leveraging external knowledge and contextual cues. We categorize these emerging LLM-driven architectures and analyze their effectiveness in mitigating core bottlenecks of conventional pipelines. In doing so, we provide a structured framework for understanding the design space of LLM-enhanced recommenders, and outline the trade-offs between accuracy, scalability, and real-time performance. Our goal is to demonstrate that LLMs are not merely auxiliary components but foundational enablers for building more adaptive, semantically rich, and user-centric recommender systems

  • 4 authors
·
Jul 17

Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations

Existing methods, such as concept bottleneck models (CBMs), have been successful in providing concept-based interpretations for black-box deep learning models. They typically work by predicting concepts given the input and then predicting the final class label given the predicted concepts. However, (1) they often fail to capture the high-order, nonlinear interaction between concepts, e.g., correcting a predicted concept (e.g., "yellow breast") does not help correct highly correlated concepts (e.g., "yellow belly"), leading to suboptimal final accuracy; (2) they cannot naturally quantify the complex conditional dependencies between different concepts and class labels (e.g., for an image with the class label "Kentucky Warbler" and a concept "black bill", what is the probability that the model correctly predicts another concept "black crown"), therefore failing to provide deeper insight into how a black-box model works. In response to these limitations, we propose Energy-based Concept Bottleneck Models (ECBMs). Our ECBMs use a set of neural networks to define the joint energy of candidate (input, concept, class) tuples. With such a unified interface, prediction, concept correction, and conditional dependency quantification are then represented as conditional probabilities, which are generated by composing different energy functions. Our ECBMs address both limitations of existing CBMs, providing higher accuracy and richer concept interpretations. Empirical results show that our approach outperforms the state-of-the-art on real-world datasets.

  • 5 authors
·
Jan 25, 2024

Team-related Features in Code Review Prediction Models

Modern Code Review (MCR) is an informal tool-assisted quality assurance practice. It relies on the asynchronous communication among the authors of code changes and reviewers, who are developers that provide feedback. However, from candidate developers, some are able to provide better feedback than others given a particular context. The selection of reviewers is thus an important task, which can benefit from automated support. Many approaches have been proposed in this direction, using for example data from code review repositories to recommend reviewers. In this paper, we propose the use of team-related features to improve the performance of predictions that are helpful to build code reviewer recommenders, with our target predictions being the identification of reviewers that would participate in a review and the provided amount of feedback. We evaluate the prediction power of these features, which are related to code ownership, workload, and team relationship. This evaluation was done by carefully addressing challenges imposed by the MCR domain, such as temporal aspects of the dataset and unbalanced classes. Moreover, given that it is currently unknown how much past data is needed for building MCR prediction models with acceptable performance, we explore the amount of past data used to build prediction models. Our results show that, individually, features related to code ownership have the best prediction power. However, based on feature selection, we conclude that all proposed features together with lines of code can make the best predictions for both reviewer participation and amount of feedback. Regarding the amount of past data, the timeframes of 3, 6, 9, and 12 months of data produce similar results. Therefore, models can be trained considering short timeframes, thus reducing the computational costs with negligible impact in the prediction performance ...

  • 3 authors
·
Dec 11, 2023

LaMDA: Language Models for Dialog Applications

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

  • 60 authors
·
Jan 20, 2022 2

Forward-Backward Reasoning in Large Language Models for Mathematical Verification

Chain-of-Thought (CoT) prompting in large language models (LLMs) has shown promising performance on mathematical reasoning tasks. Recently, Self-Consistency samples a diverse set of reasoning chains with different answers and chooses the answer by majority voting. Though effective, its performance cannot be further improved by sampling more reasoning chains. To address this problem, we propose to integrate backward reasoning into answer verification. We first mask a number in the question by {bf x}. The LLM is then asked to predict the masked number with a candidate answer A embedded in the template: ``If we know the answer to the above question is {A}, what is the value of unknown variable {bf x}?'' The LLM is expected to predict the masked number successfully if the provided candidate answer is correct. To further improve performance, we propose FOBAR (FOrward-BAckward Reasoning) to combine forward and backward reasoning for verifying candidate answers. Experiments are performed on six standard mathematical data sets and three LLMs (text-davinci-003, GPT-3.5-Turbo, GPT-4). Results show that FOBAR achieves state-of-the-art performance. In particular, FOBAR outperforms Self-Consistency which uses forward reasoning alone, demonstrating that combining forward and forward reasoning is better. It also outperforms existing verification methods, verifying the effectiveness of using the simple template in backward reasoning and the proposed combination.

  • 7 authors
·
Aug 15, 2023

JudgeBoard: Benchmarking and Enhancing Small Language Models for Reasoning Evaluation

While small language models (SLMs) have shown promise on various reasoning tasks, their ability to judge the correctness of answers remains unclear compared to large language models (LLMs). Prior work on LLM-as-a-judge frameworks typically relies on comparing candidate answers against ground-truth labels or other candidate answers using predefined metrics like entailment. However, this approach is inherently indirect and difficult to fully automate, offering limited support for fine-grained and scalable evaluation of reasoning outputs. In this work, we propose JudgeBoard, a novel evaluation pipeline that directly queries models to assess the correctness of candidate answers without requiring extra answer comparisons. We focus on two core reasoning domains: mathematical reasoning and science/commonsense reasoning, and construct task-specific evaluation leaderboards using both accuracy-based ranking and an Elo-based rating system across five benchmark datasets, enabling consistent model comparison as judges rather than comparators. To improve judgment performance in lightweight models, we propose MAJ (Multi-Agent Judging), a novel multi-agent evaluation framework that leverages multiple interacting SLMs with distinct reasoning profiles to approximate LLM-level judgment accuracy through collaborative deliberation. Experimental results reveal a significant performance gap between SLMs and LLMs in isolated judging tasks. However, our MAJ framework substantially improves the reliability and consistency of SLMs. On the MATH dataset, MAJ using smaller-sized models as backbones performs comparatively well or even better than their larger-sized counterparts. Our findings highlight that multi-agent SLM systems can potentially match or exceed LLM performance in judgment tasks, with implications for scalable and efficient assessment.

  • 7 authors
·
Nov 19

Large Reasoning Embedding Models: Towards Next-Generation Dense Retrieval Paradigm

In modern e-commerce search systems, dense retrieval has become an indispensable component. By computing similarities between query and item (product) embeddings, it efficiently selects candidate products from large-scale repositories. With the breakthroughs in large language models (LLMs), mainstream embedding models have gradually shifted from BERT to LLMs for more accurate text modeling. However, these models still adopt direct-embedding methods, and the semantic accuracy of embeddings remains inadequate. Therefore, contrastive learning is heavily employed to achieve tight semantic alignment between positive pairs. Consequently, such models tend to capture statistical co-occurrence patterns in the training data, biasing them toward shallow lexical and semantic matches. For difficult queries exhibiting notable lexical disparity from target items, the performance degrades significantly. In this work, we propose the Large Reasoning Embedding Model (LREM), which novelly integrates reasoning processes into representation learning. For difficult queries, LREM first conducts reasoning to achieve a deep understanding of the original query, and then produces a reasoning-augmented query embedding for retrieval. This reasoning process effectively bridges the semantic gap between original queries and target items, significantly improving retrieval accuracy. Specifically, we adopt a two-stage training process: the first stage optimizes the LLM on carefully curated Query-CoT-Item triplets with SFT and InfoNCE losses to establish preliminary reasoning and embedding capabilities, and the second stage further refines the reasoning trajectories via reinforcement learning (RL). Extensive offline and online experiments validate the effectiveness of LREM, leading to its deployment on China's largest e-commerce platform since August 2025.

  • 6 authors
·
Oct 16

Efficient Response Generation Method Selection for Fine-Tuning Large Language Models

The training data for fine-tuning large language models (LLMs) is typically structured as input-output pairs. However, for many tasks, there can be multiple equally valid output variations for the same input. Recent studies have observed that the choice of output variation used in training can affect the model's performance. This raises an important question: how can we generate the most effective output from the many possible response generation strategy options? Rather than relying on the traditional but resource-intensive train-and-evaluate approach, this paper proposes a scalable, approximate method for estimating the quality of a small subset of generated training data derived from the same input. We then evaluate how well this small subset of generated output fits the target model we are trying to train. We present a large-scale benchmark covering diverse reasoning-based datasets to support our study. The central idea is that a good output should closely resemble the output generated by the target LLM. We formalize this 'closeness' as the expected alignment score between a candidate output and the output sampled from the target LLM. We connect this measurement to the perplexity metric used in previous literature and demonstrate that leveraging an alignment-based metric can provide better predictions of model performance. Using this strategy, we can evaluate a small subset of the generated output from each response generation strategy option, then select the most effective strategy. We show that an LLM trained on data generated by the selected strategy could lead to a significant performance gain in many cases.

  • 3 authors
·
Feb 17

Are Large Language Models Good at Utility Judgments?

Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.

  • 6 authors
·
Mar 28, 2024

IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models

In-context learning is a promising paradigm that utilizes in-context examples as prompts for the predictions of large language models. These prompts are crucial for achieving strong performance. However, since the prompts need to be sampled from a large volume of annotated examples, finding the right prompt may result in high annotation costs. To address this challenge, this paper introduces an influence-driven selective annotation method that aims to minimize annotation costs while improving the quality of in-context examples. The essence of our method is to select a pivotal subset from a large-scale unlabeled data pool to annotate for the subsequent sampling of prompts. Specifically, a directed graph is first constructed to represent unlabeled data. Afterward, the influence of candidate unlabeled subsets is quantified with a diffusion process. A simple yet effective greedy algorithm for unlabeled data selection is lastly introduced. It iteratively selects the data if it provides a maximum marginal gain with respect to quantified influence. Compared with previous efforts on selective annotations, our influence-driven method works in an end-to-end manner, avoids an intractable explicit balance between data diversity and representativeness, and enjoys theoretical support. Experiments confirm the superiority of the proposed method on various benchmarks, achieving better performance under lower time consumption during subset selection. The project page is available at https://skzhang1.github.io/IDEAL/.

  • 7 authors
·
Oct 16, 2023

Enhancing Test-Time Scaling of Large Language Models with Hierarchical Retrieval-Augmented MCTS

Test-time scaling has emerged as a promising paradigm in language modeling, leveraging additional computational resources at inference time to enhance model performance. In this work, we introduce R2-LLMs, a novel and versatile hierarchical retrieval-augmented reasoning framework designed to improve test-time scaling in large language models (LLMs) without requiring distillation from more advanced models to obtain chain-of-thought (CoT) training data. R2-LLMs enhances inference-time generalization by integrating dual-level retrieval-based in-context learning: (1) At the coarse level, our approach extracts abstract templates from complex reasoning problems and retrieves similar problem-answer pairs to facilitate high-level in-context learning; (2) At the fine level, during Monte Carlo Tree Search (MCTS), R2-LLMs efficiently retrieves analogous intermediate solution steps from reference mathematical problem datasets, refining step-wise reasoning with the aid of a process reward model (PRM) for scoring. R2-LLMs is a robust hierarchical reasoning-augmentation method that enhances in-context-level reasoning while seamlessly integrating with step-level tree search methods. Utilizing PRM, it refines both candidate generation and decision-making for improved reasoning accuracy. Empirical evaluations on the MATH500, GSM8K, and OlympiadBench-TO datasets achieve substantial relative improvement with an increase of up to 16% using LLaMA-3.1-8B compared to the baselines, showcasing the effectiveness of our approach in complex reasoning tasks.

  • 9 authors
·
Jul 7

VideoSAVi: Self-Aligned Video Language Models without Human Supervision

Recent advances in vision-language models (VLMs) have significantly enhanced video understanding tasks. Instruction tuning (i.e., fine-tuning models on datasets of instructions paired with desired outputs) has been key to improving model performance. However, creating diverse instruction-tuning datasets is challenging due to high annotation costs and the complexity of capturing temporal information in videos. Existing approaches often rely on large language models to generate instruction-output pairs, which can limit diversity and lead to responses that lack grounding in the video content. To address this, we propose VideoSAVi (Self-Aligned Video Language Model), a novel self-training pipeline that enables VLMs to generate their own training data without extensive manual annotation. The process involves three stages: (1) generating diverse video-specific questions, (2) producing multiple candidate answers, and (3) evaluating these responses for alignment with the video content. This self-generated data is then used for direct preference optimization (DPO), allowing the model to refine its own high-quality outputs and improve alignment with video content. Our experiments demonstrate that even smaller models (0.5B and 7B parameters) can effectively use this self-training approach, outperforming previous methods and achieving results comparable to those trained on proprietary preference data. VideoSAVi shows significant improvements across multiple benchmarks: up to 28% on multi-choice QA, 8% on zero-shot open-ended QA, and 12% on temporal reasoning benchmarks. These results demonstrate the effectiveness of our self-training approach in enhancing video understanding while reducing dependence on proprietary models.

  • 2 authors
·
Nov 30, 2024

CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection

Incremental object detection (IOD) is challenged by background shift, where background categories in sequential data may include previously learned or future classes. Inspired by the vision-language foundation models such as CLIP, these models capture shared attributes from extensive image-text paired data during pre-training. We propose a novel method utilizing attributes in vision-language foundation models for incremental object detection. Our method constructs a Class-Agnostic Shared Attribute base (CASA) to capture common semantic information among incremental classes. Specifically, we utilize large language models to generate candidate textual attributes and select the most relevant ones based on current training data, recording their significance in an attribute assignment matrix. For subsequent tasks, we freeze the retained attributes and continue selecting from the remaining candidates while updating the attribute assignment matrix accordingly. Furthermore, we employ OWL-ViT as our baseline, preserving the original parameters of the pre-trained foundation model. Our method adds only 0.7% to parameter storage through parameter-efficient fine-tuning to significantly enhance the scalability and adaptability of IOD. Extensive two-phase and multi-phase experiments on the COCO dataset demonstrate the state-of-the-art performance of our proposed method.

  • 5 authors
·
Oct 8, 2024

LANTERN: Accelerating Visual Autoregressive Models with Relaxed Speculative Decoding

Auto-Regressive (AR) models have recently gained prominence in image generation, often matching or even surpassing the performance of diffusion models. However, one major limitation of AR models is their sequential nature, which processes tokens one at a time, slowing down generation compared to models like GANs or diffusion-based methods that operate more efficiently. While speculative decoding has proven effective for accelerating LLMs by generating multiple tokens in a single forward, its application in visual AR models remains largely unexplored. In this work, we identify a challenge in this setting, which we term token selection ambiguity, wherein visual AR models frequently assign uniformly low probabilities to tokens, hampering the performance of speculative decoding. To overcome this challenge, we propose a relaxed acceptance condition referred to as LANTERN that leverages the interchangeability of tokens in latent space. This relaxation restores the effectiveness of speculative decoding in visual AR models by enabling more flexible use of candidate tokens that would otherwise be prematurely rejected. Furthermore, by incorporating a total variation distance bound, we ensure that these speed gains are achieved without significantly compromising image quality or semantic coherence. Experimental results demonstrate the efficacy of our method in providing a substantial speed-up over speculative decoding. In specific, compared to a na\"ive application of the state-of-the-art speculative decoding, LANTERN increases speed-ups by 1.75times and 1.76times, as compared to greedy decoding and random sampling, respectively, when applied to LlamaGen, a contemporary visual AR model.

  • 8 authors
·
Oct 4, 2024

Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation

The rapid growth of biomedical knowledge has outpaced our ability to efficiently extract insights and generate novel hypotheses. Large language models (LLMs) have emerged as a promising tool to revolutionize knowledge interaction and potentially accelerate biomedical discovery. In this paper, we present a comprehensive evaluation of LLMs as biomedical hypothesis generators. We construct a dataset of background-hypothesis pairs from biomedical literature, carefully partitioned into training, seen, and unseen test sets based on publication date to mitigate data contamination. Using this dataset, we assess the hypothesis generation capabilities of top-tier instructed models in zero-shot, few-shot, and fine-tuning settings. To enhance the exploration of uncertainty, a crucial aspect of scientific discovery, we incorporate tool use and multi-agent interactions in our evaluation framework. Furthermore, we propose four novel metrics grounded in extensive literature review to evaluate the quality of generated hypotheses, considering both LLM-based and human assessments. Our experiments yield two key findings: 1) LLMs can generate novel and validated hypotheses, even when tested on literature unseen during training, and 2) Increasing uncertainty through multi-agent interactions and tool use can facilitate diverse candidate generation and improve zero-shot hypothesis generation performance. However, we also observe that the integration of additional knowledge through few-shot learning and tool use may not always lead to performance gains, highlighting the need for careful consideration of the type and scope of external knowledge incorporated. These findings underscore the potential of LLMs as powerful aids in biomedical hypothesis generation and provide valuable insights to guide further research in this area.

  • 9 authors
·
Jul 11, 2024

AutoRE: Document-Level Relation Extraction with Large Language Models

Large Language Models (LLMs) have demonstrated exceptional abilities in comprehending and generating text, motivating numerous researchers to utilize them for Information Extraction (IE) purposes, including Relation Extraction (RE). Nonetheless, most existing methods are predominantly designed for Sentence-level Relation Extraction (SentRE) tasks, which typically encompass a restricted set of relations and triplet facts within a single sentence. Furthermore, certain approaches resort to treating relations as candidate choices integrated into prompt templates, leading to inefficient processing and suboptimal performance when tackling Document-Level Relation Extraction (DocRE) tasks, which entail handling multiple relations and triplet facts distributed across a given document, posing distinct challenges. To overcome these limitations, we introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts). Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios. Additionally, we have developed an easily extensible RE framework using a Parameters Efficient Fine Tuning (PEFT) algorithm (QLoRA). Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results, surpassing TAG by 10.03\% and 9.03\% respectively on the dev and test set. The code is available at https://github.com/THUDM/AutoRE and the demonstration video is provided at https://www.youtube.com/watch?v=IhKRsZUAxKk.

  • 4 authors
·
Mar 21, 2024

Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation

Recently, large language models (LLMs) have shown great potential in recommender systems, either improving existing recommendation models or serving as the backbone. However, there exists a large semantic gap between LLMs and recommender systems, since items to be recommended are often indexed by discrete identifiers (item ID) out of the LLM's vocabulary. In essence, LLMs capture language semantics while recommender systems imply collaborative semantics, making it difficult to sufficiently leverage the model capacity of LLMs for recommendation. To address this challenge, in this paper, we propose a new LLM-based recommendation model called LC-Rec, which can better integrate language and collaborative semantics for recommender systems. Our approach can directly generate items from the entire item set for recommendation, without relying on candidate items. Specifically, we make two major contributions in our approach. For item indexing, we design a learning-based vector quantization method with uniform semantic mapping, which can assign meaningful and non-conflicting IDs (called item indices) for items. For alignment tuning, we propose a series of specially designed tuning tasks to enhance the integration of collaborative semantics in LLMs. Our fine-tuning tasks enforce LLMs to deeply integrate language and collaborative semantics (characterized by the learned item indices), so as to achieve an effective adaptation to recommender systems. Extensive experiments demonstrate the effectiveness of our method, showing that our approach can outperform a number of competitive baselines including traditional recommenders and existing LLM-based recommenders. Our code is available at https://github.com/RUCAIBox/LC-Rec/.

  • 7 authors
·
Nov 15, 2023

kNN-Embed: Locally Smoothed Embedding Mixtures For Multi-interest Candidate Retrieval

Candidate generation is the first stage in recommendation systems, where a light-weight system is used to retrieve potentially relevant items for an input user. These candidate items are then ranked and pruned in later stages of recommender systems using a more complex ranking model. Since candidate generation is the top of the recommendation funnel, it is important to retrieve a high-recall candidate set to feed into downstream ranking models. A common approach for candidate generation is to leverage approximate nearest neighbor (ANN) search from a single dense query embedding; however, this approach this can yield a low-diversity result set with many near duplicates. As users often have multiple interests, candidate retrieval should ideally return a diverse set of candidates reflective of the user's multiple interests. To this end, we introduce kNN-Embed, a general approach to improving diversity in dense ANN-based retrieval. kNN-Embed represents each user as a smoothed mixture over learned item clusters that represent distinct `interests' of the user. By querying each of a user's mixture component in proportion to their mixture weights, we retrieve a high-diversity set of candidates reflecting elements from each of a user's interests. We experimentally compare kNN-Embed to standard ANN candidate retrieval, and show significant improvements in overall recall and improved diversity across three datasets. Accompanying this work, we open source a large Twitter follow-graph dataset, to spur further research in graph-mining and representation learning for recommender systems.

  • 6 authors
·
May 12, 2022

Nemotron-Flash: Towards Latency-Optimal Hybrid Small Language Models

Efficient deployment of small language models (SLMs) is essential for numerous real-world applications with stringent latency constraints. While previous work on SLM design has primarily focused on reducing the number of parameters to achieve parameter-optimal SLMs, parameter efficiency does not necessarily translate into proportional real-device speed-ups. This work aims to identify the key determinants of SLMs' real-device latency and offer generalizable principles and methodologies for SLM design and training when real-device latency is the primary consideration. Specifically, we identify two central architectural factors: depth-width ratios and operator choices. The former is crucial for small-batch-size latency, while the latter affects both latency and large-batch-size throughput. In light of this, we first study latency-optimal depth-width ratios, with the key finding that although deep-thin models generally achieve better accuracy under the same parameter budget, they may not lie on the accuracy-latency trade-off frontier. Next, we explore emerging efficient attention alternatives to evaluate their potential as candidate building operators. Using the identified promising operators, we construct an evolutionary search framework to automatically discover latency-optimal combinations of these operators within hybrid SLMs, thereby advancing the accuracy-latency frontier. In addition to architectural improvements, we further enhance SLM training using a weight normalization technique that enables more effective weight updates and improves final convergence. Combining these methods, we introduce a new family of hybrid SLMs, called Nemotron-Flash, which significantly advances the accuracy-efficiency frontier of state-of-the-art SLMs, e.g., achieving over +5.5% average accuracy, 1.3x/1.9x lower latency, and 18.7x/45.6x higher throughput compared to Qwen3-1.7B/0.6B, respectively.

nvidia NVIDIA
·
Nov 24 2

Scalable In-context Ranking with Generative Models

In-context Ranking (ICR) is an emerging paradigm for Information Retrieval (IR), which leverages contextual understanding of LLMs by directly incorporating the task description, candidate documents, and the query into the model's input prompt and tasking the LLM to identify relevant document(s). While it is effective, efficiency is a significant challenge in this paradigm, especially as the candidate list grows due to quadratic/super-linear scaling of attention operation with context length. To this end, this paper first identifies inherent and exploitable structures in the attention of LLMs finetuned for ICR: (1) inter-document block sparsity: attention is dense within each document block but sparse across different documents in the context; and (2) query-document block relevance: the attention scores from certain query tokens to a document block in middle layers strongly correlate with that document's actual relevance. Motivated by these observations, we introduce BlockRank (Blockwise In-context Ranking), a novel method that adapts the attention operation in an LLM by (a) architecturally enforcing the observed inter-document block sparsity, reducing attention complexity from quadratic to linear without loss in performance, and (b) optimizing query-document block relevance for true relevant documents during fine-tuning using an auxiliary contrastive training objective, improving retrieval in attention. Experiments on BEIR, MSMarco and NQ with Mistral-7B demonstrate that FLARE Mistral matches or outperforms existing SOTA listwise rankers and controlled fine-tuned baseline while being significantly more efficient at inference (4.7x for 100 MSMarco documents in context) and scaling gracefully to long-context shortlists, around 500 documents in-context (approximately 100K context length) within a second, presenting a scalable and effective solution for ICR.

deepmind Deepmind
·
Oct 6 8

Scalable Data Ablation Approximations for Language Models through Modular Training and Merging

Training data compositions for Large Language Models (LLMs) can significantly affect their downstream performance. However, a thorough data ablation study exploring large sets of candidate data mixtures is typically prohibitively expensive since the full effect is seen only after training the models; this can lead practitioners to settle for sub-optimal data mixtures. We propose an efficient method for approximating data ablations which trains individual models on subsets of a training corpus and reuses them across evaluations of combinations of subsets. In continued pre-training experiments, we find that, given an arbitrary evaluation set, the perplexity score of a single model trained on a candidate set of data is strongly correlated with perplexity scores of parameter averages of models trained on distinct partitions of that data. From this finding, we posit that researchers and practitioners can conduct inexpensive simulations of data ablations by maintaining a pool of models that were each trained on partitions of a large training corpus, and assessing candidate data mixtures by evaluating parameter averages of combinations of these models. This approach allows for substantial improvements in amortized training efficiency -- scaling only linearly with respect to new data -- by enabling reuse of previous training computation, opening new avenues for improving model performance through rigorous, incremental data assessment and mixing.

  • 7 authors
·
Oct 21, 2024

PromptReps: Prompting Large Language Models to Generate Dense and Sparse Representations for Zero-Shot Document Retrieval

The current use of large language models (LLMs) for zero-shot document ranking follows one of two ways: 1) prompt-based re-ranking methods, which require no further training but are feasible for only re-ranking a handful of candidate documents due to the associated computational costs; and 2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training. In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token's hidden states and the corresponding logits associated to the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM. Our experimental evaluation on the BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.

  • 5 authors
·
Apr 29, 2024

Benchmarking Large Language Models on Controllable Generation under Diversified Instructions

While large language models (LLMs) have exhibited impressive instruction-following capabilities, it is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions. As a significant aspect of LLM alignment, it is thus important to formulate such a specialized set of instructions as well as investigate the resulting behavior of LLMs. To address this vacancy, we propose a new benchmark CoDI-Eval to systematically and comprehensively evaluate LLMs' responses to instructions with various constraints. We construct a large collection of constraints-attributed instructions as a test suite focused on both generalization and coverage. Specifically, we advocate an instruction diversification process to synthesize diverse forms of constraint expression and also deliberate the candidate task taxonomy with even finer-grained sub-categories. Finally, we automate the entire evaluation process to facilitate further developments. Different from existing studies on controllable text generation, CoDI-Eval extends the scope to the prevalent instruction-following paradigm for the first time. We provide extensive evaluations of representative LLMs (e.g., ChatGPT, Vicuna) on CoDI-Eval, revealing their limitations in following instructions with specific constraints and there is still a significant gap between open-source and commercial closed-source LLMs. We believe this benchmark will facilitate research into improving the controllability of LLMs' responses to instructions. Our data and code are available at https://github.com/Xt-cyh/CoDI-Eval.

  • 5 authors
·
Jan 1, 2024 2

How to Index Item IDs for Recommendation Foundation Models

Recommendation foundation model utilizes large language models (LLM) for recommendation by converting recommendation tasks into natural language tasks. It enables generative recommendation which directly generates the item(s) to recommend rather than calculating a ranking score for each and every candidate item in traditional recommendation models, simplifying the recommendation pipeline from multi-stage filtering to single-stage filtering. To avoid generating excessively long text and hallucinated recommendation when deciding which item(s) to recommend, creating LLM-compatible item IDs to uniquely identify each item is essential for recommendation foundation models. In this study, we systematically examine the item indexing problem for recommendation foundation models, using P5 as an example of backbone model. To emphasize the importance of item indexing, we first discuss the issues of several trivial item indexing methods, such as independent indexing, title indexing, and random indexing. We then propose four simple yet effective solutions, including sequential indexing, collaborative indexing, semantic (content-based) indexing, and hybrid indexing. Our study highlights the significant influence of item indexing methods on the performance of LLM-based recommendation, and our results on real-world datasets validate the effectiveness of our proposed solutions. The research also demonstrates how recent advances on language modeling and traditional IR principles such as indexing can help each other for better learning and inference.

  • 4 authors
·
May 11, 2023

Free Draft-and-Verification: Toward Lossless Parallel Decoding for Diffusion Large Language Models

Diffusion Large Language Models (DLLMs) have emerged as a new paradigm of language modeling beyond autoregressive next-token prediction. Thanks to their bidirectional attention mechanism, DLLMs are more capable of capturing the connection of context, and thus show unique advantages in challenges like the famous "reversal curse" or learning under data-constrained scenarios. In addition, taking advantage of their inherent modeling foundations, DLLMs have the great potential of efficient inference with parallel decoding algorithms, which enable multi-token prediction per step. However, the high generation quality often requires the number of decoding steps equal to the sequence length, which performs a one-token-per-step decoding, and existing parallel decoding algorithms, which yield suboptimal decoding paths, bring inference speedup at the cost of non-negligible performance degradation. To overcome this challenge, we introduce Free Draft-and-Verification (FreeDave), a novel fast decoding algorithm tailored for DLLMs that achieves lossless parallel decoding without any model modification or extra modules. Specifically, we propose an algorithm of parallel-decoded candidate generation and verification, which is theoretically guaranteed to use the fewest model forward calls to reproduce the same sequence generated by static decoding when enough computation and memory budget is provided. By extensive evaluations on math reasoning and code generation benchmarks across different DLLMs, FreeDave is proven to boost the inference throughput up to 3.78times without performance degradation.

  • 2 authors
·
Sep 30

RPGBENCH: Evaluating Large Language Models as Role-Playing Game Engines

We present RPGBench, the first benchmark designed to evaluate large language models (LLMs) as text-based role-playing game (RPG) engines. RPGBench comprises two core tasks: Game Creation (GC) and Game Simulation (GS). In GC, an LLM must craft a valid and playable RPG world using a structured event-state representation, ensuring logical coherence and proper termination conditions. In GS, the LLM simulates interactive gameplay across multiple rounds while consistently updating states and enforcing game rules. To comprehensively assess performance, RPGBench integrates objective and subjective evaluation methodologies. Objective measures verify adherence to event mechanics and check variable updates without requiring human intervention. Subjective measures, such as content interestingness, action quality, and role-playing capability, are evaluated via an LLM-as-a-judge framework, where a strong LLM grades each candidate's outputs. Empirical results demonstrate that state-of-the-art LLMs can produce engaging stories but often struggle to implement consistent, verifiable game mechanics, particularly in long or complex scenarios. By combining structured, rule-based assessments with LLM-based judgments, RPGBench provides a new standard for evaluating how well LLMs can balance creativity, coherence, and complexity in text-based RPGs, opening avenues for more immersive and controllable interactive storytelling.

  • 11 authors
·
Feb 1

COS(M+O)S: Curiosity and RL-Enhanced MCTS for Exploring Story Space via Language Models

We present COS(M+O)S, a System 2-inspired framework for open-ended plot development that systematically explores the vast space of possible story expansions, enabling a 3B-parameter language model to approach the plot quality of a 70B model on select short-story tasks. The method accomplishes this by combining Monte Carlo Tree Search (MCTS), guided by a step-level value model that rewards moderate surprisal (curiosity) while penalizing incoherence, and Odds Ratio Preference Optimization (ORPO) to fine-tune the policy on high-value plot expansions. This iterative reinforcement learning loop systematically explores multiple candidate plot branches, backpropagates quality signals, and adapts the policy for faster convergence, notably shifting the policy from puzzle-based Chain-of-Thought to more character-driven storytelling. In small-scale tests with short-story prompts, 67%-77% of participants favored COS(M+O)S's highest-rated expansions over lower-rated ones, suggesting that our learned value function aligns. GPT-4o ratings further show that COS(M+O)S surpasses naive single-pass decoding from Llama 3.2 3B by 0.59 SD, coming within 0.06 SD of Llama 3.1 70B (no significant difference, p=0.93). Pairwise comparisons with o1 place COS(M+O)S 1.5 SD above the 3B baseline and find no statistically significant gap from 70B. Nevertheless, absolute story quality remains modest, constrained by the small model's capacity and limited training data.

  • 1 authors
·
Jan 28

Magneto: Combining Small and Large Language Models for Schema Matching

Recent advances in language models opened new opportunities to address complex schema matching tasks. Schema matching approaches have been proposed that demonstrate the usefulness of language models, but they have also uncovered important limitations: Small language models (SLMs) require training data (which can be both expensive and challenging to obtain), and large language models (LLMs) often incur high computational costs and must deal with constraints imposed by context windows. We present Magneto, a cost-effective and accurate solution for schema matching that combines the advantages of SLMs and LLMs to address their limitations. By structuring the schema matching pipeline in two phases, retrieval and reranking, Magneto can use computationally efficient SLM-based strategies to derive candidate matches which can then be reranked by LLMs, thus making it possible to reduce runtime without compromising matching accuracy. We propose a self-supervised approach to fine-tune SLMs which uses LLMs to generate syntactically diverse training data, and prompting strategies that are effective for reranking. We also introduce a new benchmark, developed in collaboration with domain experts, which includes real biomedical datasets and presents new challenges to schema matching methods. Through a detailed experimental evaluation, using both our new and existing benchmarks, we show that Magneto is scalable and attains high accuracy for datasets from different domains.

  • 5 authors
·
Dec 11, 2024

Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation

LLM-based agents have demonstrated impressive zero-shot performance in vision-language navigation (VLN) task. However, existing LLM-based methods often focus only on solving high-level task planning by selecting nodes in predefined navigation graphs for movements, overlooking low-level control in navigation scenarios. To bridge this gap, we propose AO-Planner, a novel Affordances-Oriented Planner for continuous VLN task. Our AO-Planner integrates various foundation models to achieve affordances-oriented low-level motion planning and high-level decision-making, both performed in a zero-shot setting. Specifically, we employ a Visual Affordances Prompting (VAP) approach, where the visible ground is segmented by SAM to provide navigational affordances, based on which the LLM selects potential candidate waypoints and plans low-level paths towards selected waypoints. We further propose a high-level PathAgent which marks planned paths into the image input and reasons the most probable path by comprehending all environmental information. Finally, we convert the selected path into 3D coordinates using camera intrinsic parameters and depth information, avoiding challenging 3D predictions for LLMs. Experiments on the challenging R2R-CE and RxR-CE datasets show that AO-Planner achieves state-of-the-art zero-shot performance (8.8% improvement on SPL). Our method can also serve as a data annotator to obtain pseudo-labels, distilling its waypoint prediction ability into a learning-based predictor. This new predictor does not require any waypoint data from the simulator and achieves 47% SR competing with supervised methods. We establish an effective connection between LLM and 3D world, presenting novel prospects for employing foundation models in low-level motion control.

  • 6 authors
·
Jul 8, 2024

Evaluating Dialect Robustness of Language Models via Conversation Understanding

With an evergrowing number of LLMs reporting superlative performance for English, their ability to perform equitably for different dialects of English (i.e., dialect robustness) needs to be ascertained. Specifically, we use English language (US English or Indian English) conversations between humans who play the word-guessing game of `taboo'. We formulate two evaluative tasks: target word prediction (TWP) (i.e.predict the masked target word in a conversation) and target word selection (TWS) (i.e., select the most likely masked target word in a conversation, from among a set of candidate words). Extending MD3, an existing dialectic dataset of taboo-playing conversations, we introduce M-MD3, a target-word-masked version of MD3 with the USEng and IndEng subsets. We add two subsets: AITrans (where dialectic information is removed from IndEng) and AIGen (where LLMs are prompted to generate conversations). Our evaluation uses pre-trained and fine-tuned versions of two closed-source (GPT-4/3.5) and two open-source LLMs (Mistral and Gemma). LLMs perform significantly better for US English than Indian English for both TWP and TWS, for all settings. While GPT-based models perform the best, the comparatively smaller models work more equitably for short conversations (<8 turns). Our results on AIGen and AITrans (the best and worst-performing subset) respectively show that LLMs may learn a dialect of their own based on the composition of the training data, and that dialect robustness is indeed a challenging task. Our evaluation methodology exhibits a novel way to examine attributes of language models using pre-existing dialogue datasets.

  • 2 authors
·
May 9, 2024

Scaling Sparse Fine-Tuning to Large Language Models

Large Language Models (LLMs) are difficult to fully fine-tune (e.g., with instructions or human feedback) due to their sheer number of parameters. A family of parameter-efficient sparse fine-tuning (SFT) methods have proven promising in terms of performance but their memory requirements increase proportionally to the size of the LLMs. In this work, we scale sparse fine-tuning to state-of-the-art LLMs like LLaMA 2 7B and 13B. At any given time, for a desired density level, we maintain an array of parameter indices and the deltas of these parameters relative to their pretrained values. We iterate among: (a) updating the active deltas, (b) pruning indices (based on the change of magnitude of their deltas) and (c) regrowth of indices. For regrowth, we explore two criteria based on either the accumulated gradients of a few candidate parameters or their approximate momenta estimated using the efficient SM3 optimizer. We experiment with instruction-tuning of LLMs on standard dataset mixtures, finding that SFT is often superior to popular parameter-efficient fine-tuning methods like LoRA (low-rank adaptation) in terms of performance and comparable in terms of run time. We additionally show that SFT is compatible with both quantization and efficient optimizers, to facilitate scaling to ever-larger model sizes. We release the code for SFT at https://github.com/AlanAnsell/peft and for the instruction-tuning experiments at https://github.com/ducdauge/sft-llm.

  • 5 authors
·
Jan 29, 2024

Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models

Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. Recent work shows promise by decomposing such tasks using a large language model (LLM) into an executable program that invokes specialized vision models. However, generated programs are error-prone: they omit necessary steps, include spurious ones, and are unable to recover when the specialized models give incorrect outputs. Moreover, they require loading multiple models, incurring high latency and computation costs. We propose Visual Program Distillation (VPD), an instruction tuning framework that produces a vision-language model (VLM) capable of solving complex visual tasks with a single forward pass. VPD distills the reasoning ability of LLMs by using them to sample multiple candidate programs, which are then executed and verified to identify a correct one. It translates each correct program into a language description of the reasoning steps, which are then distilled into a VLM. Extensive experiments show that VPD improves the VLM's ability to count, understand spatial relations, and reason compositionally. Our VPD-trained PaLI-X outperforms all prior VLMs, achieving state-of-the-art performance across complex vision tasks, including MMBench, OK-VQA, A-OKVQA, TallyQA, POPE, and Hateful Memes. An evaluation with human annotators also confirms that VPD improves model response factuality and consistency. Finally, experiments on content moderation demonstrate that VPD is also helpful for adaptation to real-world applications with limited data.

  • 8 authors
·
Dec 5, 2023

Improving Interpersonal Communication by Simulating Audiences with Language Models

How do we communicate with others to achieve our goals? We use our prior experience or advice from others, or construct a candidate utterance by predicting how it will be received. However, our experiences are limited and biased, and reasoning about potential outcomes can be difficult and cognitively challenging. In this paper, we explore how we can leverage Large Language Model (LLM) simulations to help us communicate better. We propose the Explore-Generate-Simulate (EGS) framework, which takes as input any scenario where an individual is communicating to an audience with a goal they want to achieve. EGS (1) explores the solution space by producing a diverse set of advice relevant to the scenario, (2) generates communication candidates conditioned on subsets of the advice, and (3) simulates the reactions from various audiences to determine both the best candidate and advice to use. We evaluate the framework on eight scenarios spanning the ten fundamental processes of interpersonal communication. For each scenario, we collect a dataset of human evaluations across candidates and baselines, and showcase that our framework's chosen candidate is preferred over popular generation mechanisms including Chain-of-Thought. We also find that audience simulations achieve reasonably high agreement with human raters across 5 of the 8 scenarios. Finally, we demonstrate the generality of our framework by applying it to real-world scenarios described by users on web forums. Through evaluations and demonstrations, we show that EGS enhances the effectiveness and outcomes of goal-oriented communication across a variety of situations, thus opening up new possibilities for the application of large language models in revolutionizing communication and decision-making processes.

  • 5 authors
·
Nov 1, 2023

Teaching Large Language Models to Self-Debug

Large language models (LLMs) have achieved impressive performance on code generation. However, for complex programming tasks, generating the correct solution in one go becomes challenging, thus some prior works have designed program repair approaches to improve code generation performance. In this work, we propose Self-Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations. In particular, we demonstrate that Self-Debugging can teach the large language model to perform rubber duck debugging; i.e., without any feedback on the code correctness or error messages, the model is able to identify its mistakes by explaining the generated code in natural language. Self-Debugging achieves the state-of-the-art performance on several code generation benchmarks, including the Spider dataset for text-to-SQL generation, TransCoder for C++-to-Python translation, and MBPP for text-to-Python generation. On the Spider benchmark where there are no unit tests to verify the correctness of predictions, Self-Debugging with code explanation consistently improves the baseline by 2-3%, and improves the prediction accuracy on problems of the hardest label by 9%. On TransCoder and MBPP where unit tests are available, Self-Debugging improves the baseline accuracy by up to 12%. Meanwhile, by leveraging feedback messages and reusing failed predictions, Self-Debugging notably improves sample efficiency, and can match or outperform baseline models that generate more than 10x candidate programs.

  • 4 authors
·
Apr 11, 2023

Planning with Large Language Models for Code Generation

Existing large language model-based code generation pipelines typically use beam search or sampling algorithms during the decoding process. Although the programs they generate achieve high token-matching-based scores, they often fail to compile or generate incorrect outputs. The main reason is that conventional Transformer decoding algorithms may not be the best choice for code generation. In this work, we propose a novel Transformer decoding algorithm, Planning-Guided Transformer Decoding (PG-TD), that uses a planning algorithm to do lookahead search and guide the Transformer to generate better programs. Specifically, instead of simply optimizing the likelihood of the generated sequences, the Transformer makes use of a planner to generate candidate programs and test them on public test cases. The Transformer can therefore make more informed decisions and generate tokens that will eventually lead to higher-quality programs. We also design a mechanism that shares information between the Transformer and the planner to make our algorithm computationally efficient. We empirically evaluate our framework with several large language models as backbones on public coding challenge benchmarks, showing that 1) it can generate programs that consistently achieve higher performance compared with competing baseline methods; 2) it enables controllable code generation, such as concise codes and highly-commented codes by optimizing modified objective.

  • 6 authors
·
Mar 9, 2023