Papers
arxiv:2602.10575

MetaphorStar: Image Metaphor Understanding and Reasoning with End-to-End Visual Reinforcement Learning

Published on Feb 11
· Submitted by
Chenhao(Leo) Zhang
on Feb 13
Authors:
,
,

Abstract

MetaphorStar, an end-to-end visual reinforcement learning framework, significantly enhances metaphor comprehension in images through a specialized dataset, RL method, and benchmark, achieving state-of-the-art performance on multiple visual reasoning tasks.

AI-generated summary

Metaphorical comprehension in images remains a critical challenge for Nowadays AI systems. While Multimodal Large Language Models (MLLMs) excel at basic Visual Question Answering (VQA), they consistently struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. This difficulty stems from the task's demand for sophisticated multi-hop reasoning, cultural context, and Theory of Mind (ToM) capabilities, which current models lack. To fill this gap, we propose MetaphorStar, the first end-to-end visual reinforcement learning (RL) framework for image implication tasks. Our framework includes three core components: the fine-grained dataset TFQ-Data, the visual RL method TFQ-GRPO, and the well-structured benchmark TFQ-Bench. Our fully open-source MetaphorStar family, trained using TFQ-GRPO on TFQ-Data, significantly improves performance by an average of 82.6% on the image implication benchmarks. Compared with 20+ mainstream MLLMs, MetaphorStar-32B achieves state-of-the-art (SOTA) on Multiple-Choice Question and Open-Style Question, significantly outperforms the top closed-source model Gemini-3.0-pro on True-False Question. Crucially, our experiments reveal that learning image implication tasks improves the general understanding ability, especially the complex visual reasoning ability. We further provide a systematic analysis of model parameter scaling, training data scaling, and the impact of different model architectures and training strategies, demonstrating the broad applicability of our method. We open-sourced all model weights, datasets, and method code at https://metaphorstar.github.io.

Community

Paper submitter

Metaphorical comprehension in images remains a critical challenge for Nowadays AI systems. While Multimodal Large Language Models (MLLMs) excel at basic Visual Question Answering (VQA), they consistently struggle to grasp the nuanced cultural, emotional, and contextual implications embedded in visual content. This difficulty stems from the task's demand for sophisticated multi-hop reasoning, cultural context, and Theory of Mind (ToM) capabilities, which current models lack. To fill this gap, we propose MetaphorStar, the first end-to-end visual reinforcement learning (RL) framework for image implication tasks. Our framework includes three core components: the fine-grained dataset TFQ-Data, the visual RL method TFQ-GRPO, and the well-structured benchmark TFQ-Bench.
Our fully open-source MetaphorStar family, trained using TFQ-GRPO on TFQ-Data, significantly improves performance by an average of 82.6% on the image implication benchmarks. Compared with 20+ mainstream MLLMs, MetaphorStar-32B achieves state-of-the-art (SOTA) on Multiple-Choice Question and Open-Style Question, significantly outperforms the top closed-source model Gemini-3.0-pro on True-False Question. Crucially, our experiments reveal that learning image implication tasks improves the general understanding ability, especially the complex visual reasoning ability. We further provide a systematic analysis of model parameter scaling, training data scaling, and the impact of different model architectures and training strategies, demonstrating the broad applicability of our method. We open-sourced all model weights, datasets, and method code.

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 4

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2602.10575 in a Space README.md to link it from this page.

Collections including this paper 1