Abstract
Wolf-Rayet stars embody the final stable phase of the most massive stars immediately before their evolution is terminated in a supernova explosion. They are responsible for some of the most extreme and energetic phenomena in stellar physics, driving fast and dense stellar winds that are powered by extraordinarily high mass-loss rates arising from their near Eddington limit luminosity. When found in binary systems comprised of two hot wind-driving components, a colliding wind binary (CWB) is formed, manifesting dramatic observational signatures from the radio to X-rays. Among the wealth of rare and exotic phenomenology associated with CWBs, perhaps the most unexpected is the production of copious amounts of warm dust. A necessary condition seems to be one binary component being a carbon-rich WR star -- providing favorable chemistry for dust nucleation from the wind -- however a detailed understanding of the physics underlying this phenomenon has not been established.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper