multitalker-parakeet-streaming-0.6b-v1 / multitalker_transcript_config.py
Taejin's picture
Updating README.md and adding multitalker config
9438a9f
raw
history blame
3.88 kB
from dataclasses import dataclass, field, is_dataclass
from typing import List, Optional, Union
@dataclass
class MultitalkerTranscriptionConfig:
"""
Configuration for Multi-talker transcription with an ASR model and a diarization model.
"""
# Required configs
diar_model: Optional[str] = None # Path to a .nemo file
diar_pretrained_name: Optional[str] = None # Name of a pretrained model
max_num_of_spks: Optional[int] = 4 # maximum number of speakers
parallel_speaker_strategy: bool = True # whether to use parallel speaker strategy
masked_asr: bool = True # whether to use masked ASR
mask_preencode: bool = False # whether to mask preencode or mask features
cache_gating: bool = True # whether to use cache gating
cache_gating_buffer_size: int = 2 # buffer size for cache gating
single_speaker_mode: bool = False # whether to use single speaker mode
# General configs
session_len_sec: float = -1 # End-to-end diarization session length in seconds
num_workers: int = 8
random_seed: Optional[int] = None # seed number going to be used in seed_everything()
log: bool = True # If True,log will be printed
# Streaming diarization configs
streaming_mode: bool = True # If True, streaming diarization will be used.
spkcache_len: int = 188
spkcache_refresh_rate: int = 0
fifo_len: int = 188
chunk_len: int = 0
chunk_left_context: int = 0
chunk_right_context: int = 0
# If `cuda` is a negative number, inference will be on CPU only.
cuda: Optional[int] = None
allow_mps: bool = False # allow to select MPS device (Apple Silicon M-series GPU)
matmul_precision: str = "highest" # Literal["highest", "high", "medium"]
# ASR Configs
asr_model: Optional[str] = None
device: str = 'cuda'
audio_file: Optional[str] = None
manifest_file: Optional[str] = None
use_amp: bool = True
debug_mode: bool = False
batch_size: int = 32
chunk_size: int = -1
shift_size: int = -1
left_chunks: int = 2
online_normalization: bool = False
output_path: Optional[str] = None
pad_and_drop_preencoded: bool = False
set_decoder: Optional[str] = None # ["ctc", "rnnt"]
att_context_size: Optional[List[int]] = field(default_factory=lambda: [70, 13])
generate_realtime_scripts: bool = False
word_window: int = 50
sent_break_sec: float = 30.0
fix_prev_words_count: int = 5
update_prev_words_sentence: int = 5
left_frame_shift: int = -1
right_frame_shift: int = 0
min_sigmoid_val: float = 1e-2
discarded_frames: int = 8
print_time: bool = True
print_sample_indices: List[int] = field(default_factory=lambda: [0])
colored_text: bool = True
real_time_mode: bool = False
print_path: Optional[str] = None
ignored_initial_frame_steps: int = 5
verbose: bool = False
feat_len_sec: float = 0.01
finetune_realtime_ratio: float = 0.01
spk_supervision: str = "diar" # ["diar", "rttm"]
binary_diar_preds: bool = False
@staticmethod
def init_diar_model(cfg, diar_model):
# Set streaming mode diar_model params (matching the diarization setup from lines 263-271 of reference file)
diar_model.streaming_mode = cfg.streaming_mode
diar_model.sortformer_modules.chunk_len = cfg.chunk_len if cfg.chunk_len > 0 else 6
diar_model.sortformer_modules.spkcache_len = cfg.spkcache_len
diar_model.sortformer_modules.chunk_left_context = cfg.chunk_left_context
diar_model.sortformer_modules.chunk_right_context = cfg.chunk_right_context if cfg.chunk_right_context > 0 else 7
diar_model.sortformer_modules.fifo_len = cfg.fifo_len
diar_model.sortformer_modules.log = cfg.log
diar_model.sortformer_modules.spkcache_refresh_rate = cfg.spkcache_refresh_rate
return diar_model