File size: 7,681 Bytes
edb5977
 
e3b2ec4
2792e1a
e3b2ec4
 
 
 
 
 
 
 
 
 
 
edb5977
e3b2ec4
 
 
edb5977
e3b2ec4
 
 
 
 
 
 
edb5977
e3b2ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb5977
e3b2ec4
 
 
 
edb5977
 
e3b2ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edb5977
 
e3b2ec4
2792e1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b2ec4
edb5977
 
 
 
 
e3b2ec4
edb5977
e3b2ec4
 
edb5977
e3b2ec4
 
 
 
 
 
edb5977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b2ec4
 
 
edb5977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3b2ec4
edb5977
 
 
 
 
e3b2ec4
edb5977
e3b2ec4
edb5977
 
e3b2ec4
 
 
 
 
 
 
 
2792e1a
 
e3b2ec4
 
2792e1a
e3b2ec4
 
 
 
 
2792e1a
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# handler.py — BiRefNet endpoint handler
# Fully instrumented for debugging input structure and format.

from typing import Dict, Any, Tuple, Optional
import os
import io
import base64
import requests
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

torch.set_float32_matmul_precision("high")
device = "cuda" if torch.cuda.is_available() else "cpu"

# ======================================================
# Utility functions
# ======================================================
def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image = np.array(image) / 255.0
    mask = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
    return Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))

def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]

def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)
    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    return np.clip(F, 0, 1), blurred_B

# ======================================================
# Preprocessing
# ======================================================
class ImagePreprocessor:
    def __init__(self, resolution: Tuple[int, int] = (1024, 1024)):
        self.transform_image = transforms.Compose([
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])

    def proc(self, image: Image.Image) -> torch.Tensor:
        return self.transform_image(image)

# ======================================================
# Model and Endpoint
# ======================================================
usage_to_weights_file = {
    'General': 'BiRefNet',
    'General-HR': 'BiRefNet_HR',
    'General-Lite': 'BiRefNet_lite',
    'General-Lite-2K': 'BiRefNet_lite-2K',
    'General-reso_512': 'BiRefNet-reso_512',
    'Matting': 'BiRefNet-matting',
    'Matting-HR': 'BiRefNet_HR-Matting',
    'Portrait': 'BiRefNet-portrait',
    'DIS': 'BiRefNet-DIS5K',
    'HRSOD': 'BiRefNet-HRSOD',
    'COD': 'BiRefNet-COD',
    'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
    'General-legacy': 'BiRefNet-legacy'
}

usage = "General"
resolution = (1024, 1024)
half_precision = True
SEGMENTATION_THRESHOLD = 0.05


def extract_bbox_from_mask(mask: Image.Image, threshold: float = SEGMENTATION_THRESHOLD) -> Optional[Dict[str, int]]:
    """Compute a bounding box for the non-zero region of the mask."""
    mask_gray = mask.convert("L")
    mask_array = np.array(mask_gray, dtype=np.float32) / 255.0
    binary = mask_array > threshold
    if not np.any(binary):
        return None
    ys, xs = np.where(binary)
    x_min, x_max = xs.min(), xs.max()
    y_min, y_max = ys.min(), ys.max()
    return {
        "x": int(x_min),
        "y": int(y_min),
        "width": int(x_max - x_min + 1),
        "height": int(y_max - y_min + 1),
    }

# ======================================================
# Endpoint Handler
# ======================================================
class EndpointHandler:
    def __init__(self, path=""):
        self.birefnet = AutoModelForImageSegmentation.from_pretrained(
            f"zhengpeng7/{usage_to_weights_file[usage]}",
            trust_remote_code=True
        )
        self.birefnet.to(device).eval()
        if half_precision:
            self.birefnet.half()
        print("✅ BiRefNet model loaded successfully.")

    def __call__(self, data: Dict[str, Any]):
        image_src = data.get("inputs")

        # ================= DEBUG LOGS =================
        print("\n==============================")
        print("🧩 DEBUG: Incoming data structure")
        print(f"Type of data: {type(data)}")
        print(f"Keys: {list(data.keys()) if isinstance(data, dict) else 'N/A'}")
        print(f"Type of inputs: {type(image_src)}")
        if isinstance(image_src, str):
            print(f"  Length: {len(image_src)}")
            print(f"  Starts with: {repr(image_src[:120])}")
        elif isinstance(image_src, bytes):
            print(f"  Bytes length: {len(image_src)}")
        else:
            print(f"  Value preview: {repr(image_src)[:200]}")
        print("==============================\n", flush=True)
        # ===============================================

        if image_src is None:
            raise ValueError("Missing 'inputs' key in request payload")

        # ✅ Decode base64 / data URI / URL / file path
        try:
            if isinstance(image_src, (bytes, bytearray)):
                image_ori = Image.open(io.BytesIO(image_src))
            elif isinstance(image_src, str):
                image_src = image_src.strip()

                if image_src.startswith("data:image"):
                    header, b64data = image_src.split(",", 1)
                    image_bytes = base64.b64decode(b64data)
                    image_ori = Image.open(io.BytesIO(image_bytes))
                elif any(image_src.startswith(pfx) for pfx in ("iVBOR", "/9j/", "R0lG", "UklG")):
                    image_bytes = base64.b64decode(image_src)
                    image_ori = Image.open(io.BytesIO(image_bytes))
                elif image_src.startswith("http"):
                    response = requests.get(image_src)
                    image_ori = Image.open(io.BytesIO(response.content))
                elif os.path.isfile(image_src):
                    image_ori = Image.open(image_src)
                else:
                    raise ValueError(f"Unsupported input string format: {image_src[:40]}...")
            else:
                image_ori = Image.fromarray(np.array(image_src))

        except Exception as e:
            print(f"❌ ERROR decoding input: {e}")
            raise

        image = image_ori.convert("RGB")

        image_preprocessor = ImagePreprocessor(resolution=resolution)
        image_proc = image_preprocessor.proc(image).unsqueeze(0)

        with torch.no_grad():
            preds = self.birefnet(
                image_proc.to(device).half() if half_precision else image_proc.to(device)
            )[-1].sigmoid().cpu()

        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask_resized = pred_pil.resize(image.size)
        mask_bbox = extract_bbox_from_mask(mask_resized)

        image_masked = refine_foreground(image, pred_pil)
        image_masked.putalpha(mask_resized)

        buffer = io.BytesIO()
        image_masked.save(buffer, format="PNG")
        encoded_result = base64.b64encode(buffer.getvalue()).decode("utf-8")

        mask_buffer = io.BytesIO()
        mask_resized.save(mask_buffer, format="PNG")
        encoded_mask = base64.b64encode(mask_buffer.getvalue()).decode("utf-8")

        return {
            "image_base64": encoded_result,
            "mask_base64": encoded_mask,
            "mask_bbox": mask_bbox,
            "mask_size": {"width": mask_resized.width, "height": mask_resized.height},
        }