File size: 7,681 Bytes
edb5977 e3b2ec4 2792e1a e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 2792e1a e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 edb5977 e3b2ec4 2792e1a e3b2ec4 2792e1a e3b2ec4 2792e1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# handler.py — BiRefNet endpoint handler
# Fully instrumented for debugging input structure and format.
from typing import Dict, Any, Tuple, Optional
import os
import io
import base64
import requests
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
torch.set_float32_matmul_precision("high")
device = "cuda" if torch.cuda.is_available() else "cpu"
# ======================================================
# Utility functions
# ======================================================
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
return Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
return np.clip(F, 0, 1), blurred_B
# ======================================================
# Preprocessing
# ======================================================
class ImagePreprocessor:
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)):
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
return self.transform_image(image)
# ======================================================
# Model and Endpoint
# ======================================================
usage_to_weights_file = {
'General': 'BiRefNet',
'General-HR': 'BiRefNet_HR',
'General-Lite': 'BiRefNet_lite',
'General-Lite-2K': 'BiRefNet_lite-2K',
'General-reso_512': 'BiRefNet-reso_512',
'Matting': 'BiRefNet-matting',
'Matting-HR': 'BiRefNet_HR-Matting',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy'
}
usage = "General"
resolution = (1024, 1024)
half_precision = True
SEGMENTATION_THRESHOLD = 0.05
def extract_bbox_from_mask(mask: Image.Image, threshold: float = SEGMENTATION_THRESHOLD) -> Optional[Dict[str, int]]:
"""Compute a bounding box for the non-zero region of the mask."""
mask_gray = mask.convert("L")
mask_array = np.array(mask_gray, dtype=np.float32) / 255.0
binary = mask_array > threshold
if not np.any(binary):
return None
ys, xs = np.where(binary)
x_min, x_max = xs.min(), xs.max()
y_min, y_max = ys.min(), ys.max()
return {
"x": int(x_min),
"y": int(y_min),
"width": int(x_max - x_min + 1),
"height": int(y_max - y_min + 1),
}
# ======================================================
# Endpoint Handler
# ======================================================
class EndpointHandler:
def __init__(self, path=""):
self.birefnet = AutoModelForImageSegmentation.from_pretrained(
f"zhengpeng7/{usage_to_weights_file[usage]}",
trust_remote_code=True
)
self.birefnet.to(device).eval()
if half_precision:
self.birefnet.half()
print("✅ BiRefNet model loaded successfully.")
def __call__(self, data: Dict[str, Any]):
image_src = data.get("inputs")
# ================= DEBUG LOGS =================
print("\n==============================")
print("🧩 DEBUG: Incoming data structure")
print(f"Type of data: {type(data)}")
print(f"Keys: {list(data.keys()) if isinstance(data, dict) else 'N/A'}")
print(f"Type of inputs: {type(image_src)}")
if isinstance(image_src, str):
print(f" Length: {len(image_src)}")
print(f" Starts with: {repr(image_src[:120])}")
elif isinstance(image_src, bytes):
print(f" Bytes length: {len(image_src)}")
else:
print(f" Value preview: {repr(image_src)[:200]}")
print("==============================\n", flush=True)
# ===============================================
if image_src is None:
raise ValueError("Missing 'inputs' key in request payload")
# ✅ Decode base64 / data URI / URL / file path
try:
if isinstance(image_src, (bytes, bytearray)):
image_ori = Image.open(io.BytesIO(image_src))
elif isinstance(image_src, str):
image_src = image_src.strip()
if image_src.startswith("data:image"):
header, b64data = image_src.split(",", 1)
image_bytes = base64.b64decode(b64data)
image_ori = Image.open(io.BytesIO(image_bytes))
elif any(image_src.startswith(pfx) for pfx in ("iVBOR", "/9j/", "R0lG", "UklG")):
image_bytes = base64.b64decode(image_src)
image_ori = Image.open(io.BytesIO(image_bytes))
elif image_src.startswith("http"):
response = requests.get(image_src)
image_ori = Image.open(io.BytesIO(response.content))
elif os.path.isfile(image_src):
image_ori = Image.open(image_src)
else:
raise ValueError(f"Unsupported input string format: {image_src[:40]}...")
else:
image_ori = Image.fromarray(np.array(image_src))
except Exception as e:
print(f"❌ ERROR decoding input: {e}")
raise
image = image_ori.convert("RGB")
image_preprocessor = ImagePreprocessor(resolution=resolution)
image_proc = image_preprocessor.proc(image).unsqueeze(0)
with torch.no_grad():
preds = self.birefnet(
image_proc.to(device).half() if half_precision else image_proc.to(device)
)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask_resized = pred_pil.resize(image.size)
mask_bbox = extract_bbox_from_mask(mask_resized)
image_masked = refine_foreground(image, pred_pil)
image_masked.putalpha(mask_resized)
buffer = io.BytesIO()
image_masked.save(buffer, format="PNG")
encoded_result = base64.b64encode(buffer.getvalue()).decode("utf-8")
mask_buffer = io.BytesIO()
mask_resized.save(mask_buffer, format="PNG")
encoded_mask = base64.b64encode(mask_buffer.getvalue()).decode("utf-8")
return {
"image_base64": encoded_result,
"mask_base64": encoded_mask,
"mask_bbox": mask_bbox,
"mask_size": {"width": mask_resized.width, "height": mask_resized.height},
}
|