Commit
·
16b7417
1
Parent(s):
6d3f4b0
First model version
Browse files- .gitignore +1 -0
- README.md +28 -0
- config.json +71 -0
- convert.py +150 -0
- pytorch_model.bin +3 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
content-vec-best-legacy-500.pt
|
README.md
CHANGED
|
@@ -1,3 +1,31 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# Content Vec Best
|
| 6 |
+
Official Repo: [ContentVec](https://github.com/auspicious3000/contentvec)
|
| 7 |
+
This repo brings fairseq ContentVec model to HuggingFace Transformers.
|
| 8 |
+
|
| 9 |
+
## How to use
|
| 10 |
+
To use this model, you need to define
|
| 11 |
+
```python
|
| 12 |
+
class HubertModelWithFinalProj(HubertModel):
|
| 13 |
+
def __init__(self, config):
|
| 14 |
+
super().__init__(config)
|
| 15 |
+
|
| 16 |
+
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
and then load the model with
|
| 20 |
+
```python
|
| 21 |
+
model = HubertModelWithFinalProj.from_pretrained("lengyue233/content-vec-best")
|
| 22 |
+
|
| 23 |
+
x = model(audio)["last_hidden_state"]
|
| 24 |
+
x = model.final_proj(x)
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## How to convert
|
| 28 |
+
You need to download the ContentVec_legacy model from the official repo, and then run
|
| 29 |
+
```bash
|
| 30 |
+
python convert.py
|
| 31 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_dropout": 0.1,
|
| 3 |
+
"apply_spec_augment": true,
|
| 4 |
+
"architectures": [
|
| 5 |
+
"HubertModelWithFinalProj"
|
| 6 |
+
],
|
| 7 |
+
"attention_dropout": 0.1,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"classifier_proj_size": 256,
|
| 10 |
+
"conv_bias": false,
|
| 11 |
+
"conv_dim": [
|
| 12 |
+
512,
|
| 13 |
+
512,
|
| 14 |
+
512,
|
| 15 |
+
512,
|
| 16 |
+
512,
|
| 17 |
+
512,
|
| 18 |
+
512
|
| 19 |
+
],
|
| 20 |
+
"conv_kernel": [
|
| 21 |
+
10,
|
| 22 |
+
3,
|
| 23 |
+
3,
|
| 24 |
+
3,
|
| 25 |
+
3,
|
| 26 |
+
2,
|
| 27 |
+
2
|
| 28 |
+
],
|
| 29 |
+
"conv_stride": [
|
| 30 |
+
5,
|
| 31 |
+
2,
|
| 32 |
+
2,
|
| 33 |
+
2,
|
| 34 |
+
2,
|
| 35 |
+
2,
|
| 36 |
+
2
|
| 37 |
+
],
|
| 38 |
+
"ctc_loss_reduction": "sum",
|
| 39 |
+
"ctc_zero_infinity": false,
|
| 40 |
+
"do_stable_layer_norm": false,
|
| 41 |
+
"eos_token_id": 2,
|
| 42 |
+
"feat_extract_activation": "gelu",
|
| 43 |
+
"feat_extract_norm": "group",
|
| 44 |
+
"feat_proj_dropout": 0.0,
|
| 45 |
+
"feat_proj_layer_norm": true,
|
| 46 |
+
"final_dropout": 0.1,
|
| 47 |
+
"hidden_act": "gelu",
|
| 48 |
+
"hidden_dropout": 0.1,
|
| 49 |
+
"hidden_size": 768,
|
| 50 |
+
"initializer_range": 0.02,
|
| 51 |
+
"intermediate_size": 3072,
|
| 52 |
+
"layer_norm_eps": 1e-05,
|
| 53 |
+
"layerdrop": 0.1,
|
| 54 |
+
"mask_feature_length": 10,
|
| 55 |
+
"mask_feature_min_masks": 0,
|
| 56 |
+
"mask_feature_prob": 0.0,
|
| 57 |
+
"mask_time_length": 10,
|
| 58 |
+
"mask_time_min_masks": 2,
|
| 59 |
+
"mask_time_prob": 0.05,
|
| 60 |
+
"model_type": "hubert",
|
| 61 |
+
"num_attention_heads": 12,
|
| 62 |
+
"num_conv_pos_embedding_groups": 16,
|
| 63 |
+
"num_conv_pos_embeddings": 128,
|
| 64 |
+
"num_feat_extract_layers": 7,
|
| 65 |
+
"num_hidden_layers": 12,
|
| 66 |
+
"pad_token_id": 0,
|
| 67 |
+
"torch_dtype": "float32",
|
| 68 |
+
"transformers_version": "4.27.3",
|
| 69 |
+
"use_weighted_layer_sum": false,
|
| 70 |
+
"vocab_size": 32
|
| 71 |
+
}
|
convert.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from transformers import HubertConfig, HubertModel
|
| 4 |
+
import logging
|
| 5 |
+
|
| 6 |
+
# Ignore fairseq's logger
|
| 7 |
+
logging.getLogger("fairseq").setLevel(logging.WARNING)
|
| 8 |
+
logging.getLogger("torch.distributed.nn.jit.instantiator").setLevel(logging.WARNING)
|
| 9 |
+
|
| 10 |
+
from fairseq import checkpoint_utils
|
| 11 |
+
|
| 12 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
| 13 |
+
["content-vec-best-legacy-500.pt"], suffix=""
|
| 14 |
+
)
|
| 15 |
+
model = models[0]
|
| 16 |
+
model.eval()
|
| 17 |
+
model.eval()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class HubertModelWithFinalProj(HubertModel):
|
| 21 |
+
def __init__(self, config):
|
| 22 |
+
super().__init__(config)
|
| 23 |
+
|
| 24 |
+
self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# Default Config
|
| 28 |
+
hubert = HubertModelWithFinalProj(HubertConfig())
|
| 29 |
+
|
| 30 |
+
# huggingface: fairseq
|
| 31 |
+
mapping = {
|
| 32 |
+
"masked_spec_embed": "mask_emb",
|
| 33 |
+
"encoder.layer_norm.bias": "encoder.layer_norm.bias",
|
| 34 |
+
"encoder.layer_norm.weight": "encoder.layer_norm.weight",
|
| 35 |
+
"encoder.pos_conv_embed.conv.bias": "encoder.pos_conv.0.bias",
|
| 36 |
+
"encoder.pos_conv_embed.conv.weight_g": "encoder.pos_conv.0.weight_g",
|
| 37 |
+
"encoder.pos_conv_embed.conv.weight_v": "encoder.pos_conv.0.weight_v",
|
| 38 |
+
"feature_projection.layer_norm.bias": "layer_norm.bias",
|
| 39 |
+
"feature_projection.layer_norm.weight": "layer_norm.weight",
|
| 40 |
+
"feature_projection.projection.bias": "post_extract_proj.bias",
|
| 41 |
+
"feature_projection.projection.weight": "post_extract_proj.weight",
|
| 42 |
+
"final_proj.bias": "final_proj.bias",
|
| 43 |
+
"final_proj.weight": "final_proj.weight",
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
# Convert encoder
|
| 47 |
+
for layer in range(12):
|
| 48 |
+
for j in ["q", "k", "v"]:
|
| 49 |
+
mapping[
|
| 50 |
+
f"encoder.layers.{layer}.attention.{j}_proj.weight"
|
| 51 |
+
] = f"encoder.layers.{layer}.self_attn.{j}_proj.weight"
|
| 52 |
+
mapping[
|
| 53 |
+
f"encoder.layers.{layer}.attention.{j}_proj.bias"
|
| 54 |
+
] = f"encoder.layers.{layer}.self_attn.{j}_proj.bias"
|
| 55 |
+
|
| 56 |
+
mapping[
|
| 57 |
+
f"encoder.layers.{layer}.final_layer_norm.bias"
|
| 58 |
+
] = f"encoder.layers.{layer}.final_layer_norm.bias"
|
| 59 |
+
mapping[
|
| 60 |
+
f"encoder.layers.{layer}.final_layer_norm.weight"
|
| 61 |
+
] = f"encoder.layers.{layer}.final_layer_norm.weight"
|
| 62 |
+
|
| 63 |
+
mapping[
|
| 64 |
+
f"encoder.layers.{layer}.layer_norm.bias"
|
| 65 |
+
] = f"encoder.layers.{layer}.self_attn_layer_norm.bias"
|
| 66 |
+
mapping[
|
| 67 |
+
f"encoder.layers.{layer}.layer_norm.weight"
|
| 68 |
+
] = f"encoder.layers.{layer}.self_attn_layer_norm.weight"
|
| 69 |
+
|
| 70 |
+
mapping[
|
| 71 |
+
f"encoder.layers.{layer}.attention.out_proj.bias"
|
| 72 |
+
] = f"encoder.layers.{layer}.self_attn.out_proj.bias"
|
| 73 |
+
mapping[
|
| 74 |
+
f"encoder.layers.{layer}.attention.out_proj.weight"
|
| 75 |
+
] = f"encoder.layers.{layer}.self_attn.out_proj.weight"
|
| 76 |
+
|
| 77 |
+
mapping[
|
| 78 |
+
f"encoder.layers.{layer}.feed_forward.intermediate_dense.bias"
|
| 79 |
+
] = f"encoder.layers.{layer}.fc1.bias"
|
| 80 |
+
mapping[
|
| 81 |
+
f"encoder.layers.{layer}.feed_forward.intermediate_dense.weight"
|
| 82 |
+
] = f"encoder.layers.{layer}.fc1.weight"
|
| 83 |
+
|
| 84 |
+
mapping[
|
| 85 |
+
f"encoder.layers.{layer}.feed_forward.output_dense.bias"
|
| 86 |
+
] = f"encoder.layers.{layer}.fc2.bias"
|
| 87 |
+
mapping[
|
| 88 |
+
f"encoder.layers.{layer}.feed_forward.output_dense.weight"
|
| 89 |
+
] = f"encoder.layers.{layer}.fc2.weight"
|
| 90 |
+
|
| 91 |
+
# Convert Conv Layers
|
| 92 |
+
for layer in range(7):
|
| 93 |
+
mapping[
|
| 94 |
+
f"feature_extractor.conv_layers.{layer}.conv.weight"
|
| 95 |
+
] = f"feature_extractor.conv_layers.{layer}.0.weight"
|
| 96 |
+
|
| 97 |
+
if layer != 0:
|
| 98 |
+
continue
|
| 99 |
+
|
| 100 |
+
mapping[
|
| 101 |
+
f"feature_extractor.conv_layers.{layer}.layer_norm.weight"
|
| 102 |
+
] = f"feature_extractor.conv_layers.{layer}.2.weight"
|
| 103 |
+
mapping[
|
| 104 |
+
f"feature_extractor.conv_layers.{layer}.layer_norm.bias"
|
| 105 |
+
] = f"feature_extractor.conv_layers.{layer}.2.bias"
|
| 106 |
+
|
| 107 |
+
hf_keys = set(hubert.state_dict().keys())
|
| 108 |
+
fair_keys = set(model.state_dict().keys())
|
| 109 |
+
|
| 110 |
+
hf_keys -= set(mapping.keys())
|
| 111 |
+
fair_keys -= set(mapping.values())
|
| 112 |
+
|
| 113 |
+
for i, j in zip(sorted(hf_keys), sorted(fair_keys)):
|
| 114 |
+
print(i, j)
|
| 115 |
+
|
| 116 |
+
print(hf_keys, fair_keys)
|
| 117 |
+
print(len(hf_keys), len(fair_keys))
|
| 118 |
+
|
| 119 |
+
# try loading the weights
|
| 120 |
+
new_state_dict = {}
|
| 121 |
+
for k, v in mapping.items():
|
| 122 |
+
new_state_dict[k] = model.state_dict()[v]
|
| 123 |
+
|
| 124 |
+
x = hubert.load_state_dict(new_state_dict, strict=False)
|
| 125 |
+
print(x)
|
| 126 |
+
hubert.eval()
|
| 127 |
+
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
new_input = torch.randn(1, 16384)
|
| 130 |
+
|
| 131 |
+
result1 = hubert(new_input, output_hidden_states=True)["hidden_states"][9]
|
| 132 |
+
result1 = hubert.final_proj(result1)
|
| 133 |
+
|
| 134 |
+
result2 = model.extract_features(
|
| 135 |
+
**{
|
| 136 |
+
"source": new_input,
|
| 137 |
+
"padding_mask": torch.zeros(1, 16384, dtype=torch.bool),
|
| 138 |
+
# "features_only": True,
|
| 139 |
+
"output_layer": 9,
|
| 140 |
+
}
|
| 141 |
+
)[0]
|
| 142 |
+
result2 = model.final_proj(result2)
|
| 143 |
+
|
| 144 |
+
assert torch.allclose(result1, result2, atol=1e-3)
|
| 145 |
+
|
| 146 |
+
print("Sanity check passed")
|
| 147 |
+
|
| 148 |
+
# Save huggingface model
|
| 149 |
+
hubert.save_pretrained(".")
|
| 150 |
+
print("Saved model")
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8dd400e054ddf4e6be75dab5a2549db748cc99e756a097c496c099f65a4854e
|
| 3 |
+
size 378342945
|