lorenzoscottb/PreDA-t5
Browse files
.ipynb_checkpoints/README-checkpoint.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
base_model: google-t5/t5-large
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
metrics:
|
| 8 |
+
- rouge
|
| 9 |
+
model-index:
|
| 10 |
+
- name: PreDA_t5-large
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# PreDA_t5-large
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on the None dataset.
|
| 20 |
+
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 1.6073
|
| 22 |
+
- Rouge1: 0.6587
|
| 23 |
+
- Rouge2: 0.4979
|
| 24 |
+
- Rougel: 0.6269
|
| 25 |
+
- Rougelsum: 0.6270
|
| 26 |
+
|
| 27 |
+
## Model description
|
| 28 |
+
|
| 29 |
+
More information needed than this
|
| 30 |
+
|
| 31 |
+
## Intended uses & limitations
|
| 32 |
+
|
| 33 |
+
More information needed
|
| 34 |
+
|
| 35 |
+
## Training and evaluation data
|
| 36 |
+
|
| 37 |
+
More information needed
|
| 38 |
+
|
| 39 |
+
## Training procedure
|
| 40 |
+
|
| 41 |
+
### Training hyperparameters
|
| 42 |
+
|
| 43 |
+
The following hyperparameters were used during training:
|
| 44 |
+
- learning_rate: 0.001
|
| 45 |
+
- train_batch_size: 8
|
| 46 |
+
- eval_batch_size: 8
|
| 47 |
+
- seed: 42
|
| 48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 49 |
+
- lr_scheduler_type: linear
|
| 50 |
+
- num_epochs: 20
|
| 51 |
+
- label_smoothing_factor: 0.1
|
| 52 |
+
|
| 53 |
+
### Training results
|
| 54 |
+
|
| 55 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
| 56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
|
| 57 |
+
| 1.9478 | 1.0 | 539 | 1.9524 | 0.3298 | 0.1797 | 0.3121 | 0.3113 |
|
| 58 |
+
| 1.9141 | 2.0 | 1078 | 1.9039 | 0.3665 | 0.1942 | 0.3495 | 0.3489 |
|
| 59 |
+
| 1.914 | 3.0 | 1617 | 1.8993 | 0.4076 | 0.2223 | 0.3873 | 0.3870 |
|
| 60 |
+
| 1.9264 | 4.0 | 2156 | 1.8725 | 0.3454 | 0.1843 | 0.3306 | 0.3302 |
|
| 61 |
+
| 1.9018 | 5.0 | 2695 | 1.8669 | 0.3494 | 0.1814 | 0.3345 | 0.3347 |
|
| 62 |
+
| 1.889 | 6.0 | 3234 | 1.8872 | 0.3387 | 0.1609 | 0.3211 | 0.3208 |
|
| 63 |
+
| 1.8511 | 7.0 | 3773 | 1.8412 | 0.4200 | 0.2403 | 0.4065 | 0.4065 |
|
| 64 |
+
| 1.8756 | 8.0 | 4312 | 1.8191 | 0.4735 | 0.2705 | 0.4467 | 0.4469 |
|
| 65 |
+
| 1.8483 | 9.0 | 4851 | 1.7966 | 0.4915 | 0.2996 | 0.4662 | 0.4665 |
|
| 66 |
+
| 1.8182 | 10.0 | 5390 | 1.7787 | 0.5071 | 0.3169 | 0.4857 | 0.4860 |
|
| 67 |
+
| 1.7715 | 11.0 | 5929 | 1.7709 | 0.5017 | 0.3182 | 0.4767 | 0.4767 |
|
| 68 |
+
| 1.7955 | 12.0 | 6468 | 1.7557 | 0.4772 | 0.3015 | 0.4544 | 0.4549 |
|
| 69 |
+
| 1.7391 | 13.0 | 7007 | 1.7279 | 0.5644 | 0.3693 | 0.5270 | 0.5281 |
|
| 70 |
+
| 1.7013 | 14.0 | 7546 | 1.7054 | 0.5484 | 0.3694 | 0.5222 | 0.5221 |
|
| 71 |
+
| 1.7364 | 15.0 | 8085 | 1.6900 | 0.5607 | 0.3778 | 0.5349 | 0.5350 |
|
| 72 |
+
| 1.6592 | 16.0 | 8624 | 1.6643 | 0.6010 | 0.4191 | 0.5691 | 0.5688 |
|
| 73 |
+
| 1.645 | 17.0 | 9163 | 1.6448 | 0.6160 | 0.4440 | 0.5854 | 0.5863 |
|
| 74 |
+
| 1.6245 | 18.0 | 9702 | 1.6264 | 0.6301 | 0.4640 | 0.6015 | 0.6018 |
|
| 75 |
+
| 1.616 | 19.0 | 10241 | 1.6145 | 0.6578 | 0.4933 | 0.6253 | 0.6251 |
|
| 76 |
+
| 1.5914 | 20.0 | 10780 | 1.6073 | 0.6587 | 0.4979 | 0.6269 | 0.6270 |
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
### Framework versions
|
| 80 |
+
|
| 81 |
+
- Transformers 4.44.2
|
| 82 |
+
- Pytorch 2.1.0+cu118
|
| 83 |
+
- Datasets 3.0.1
|
| 84 |
+
- Tokenizers 0.19.1
|