lorenzoscottb commited on
Commit
f1c4406
·
verified ·
1 Parent(s): f45f1a1

lorenzoscottb/PreDA-t5

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google-t5/t5-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: PreDA_t5-large
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # PreDA_t5-large
18
+
19
+ This model is a fine-tuned version of [google-t5/t5-large](https://huggingface.co/google-t5/t5-large) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.6073
22
+ - Rouge1: 0.6587
23
+ - Rouge2: 0.4979
24
+ - Rougel: 0.6269
25
+ - Rougelsum: 0.6270
26
+
27
+ ## Model description
28
+
29
+ More information needed than this
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 0.001
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 20
51
+ - label_smoothing_factor: 0.1
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
57
+ | 1.9478 | 1.0 | 539 | 1.9524 | 0.3298 | 0.1797 | 0.3121 | 0.3113 |
58
+ | 1.9141 | 2.0 | 1078 | 1.9039 | 0.3665 | 0.1942 | 0.3495 | 0.3489 |
59
+ | 1.914 | 3.0 | 1617 | 1.8993 | 0.4076 | 0.2223 | 0.3873 | 0.3870 |
60
+ | 1.9264 | 4.0 | 2156 | 1.8725 | 0.3454 | 0.1843 | 0.3306 | 0.3302 |
61
+ | 1.9018 | 5.0 | 2695 | 1.8669 | 0.3494 | 0.1814 | 0.3345 | 0.3347 |
62
+ | 1.889 | 6.0 | 3234 | 1.8872 | 0.3387 | 0.1609 | 0.3211 | 0.3208 |
63
+ | 1.8511 | 7.0 | 3773 | 1.8412 | 0.4200 | 0.2403 | 0.4065 | 0.4065 |
64
+ | 1.8756 | 8.0 | 4312 | 1.8191 | 0.4735 | 0.2705 | 0.4467 | 0.4469 |
65
+ | 1.8483 | 9.0 | 4851 | 1.7966 | 0.4915 | 0.2996 | 0.4662 | 0.4665 |
66
+ | 1.8182 | 10.0 | 5390 | 1.7787 | 0.5071 | 0.3169 | 0.4857 | 0.4860 |
67
+ | 1.7715 | 11.0 | 5929 | 1.7709 | 0.5017 | 0.3182 | 0.4767 | 0.4767 |
68
+ | 1.7955 | 12.0 | 6468 | 1.7557 | 0.4772 | 0.3015 | 0.4544 | 0.4549 |
69
+ | 1.7391 | 13.0 | 7007 | 1.7279 | 0.5644 | 0.3693 | 0.5270 | 0.5281 |
70
+ | 1.7013 | 14.0 | 7546 | 1.7054 | 0.5484 | 0.3694 | 0.5222 | 0.5221 |
71
+ | 1.7364 | 15.0 | 8085 | 1.6900 | 0.5607 | 0.3778 | 0.5349 | 0.5350 |
72
+ | 1.6592 | 16.0 | 8624 | 1.6643 | 0.6010 | 0.4191 | 0.5691 | 0.5688 |
73
+ | 1.645 | 17.0 | 9163 | 1.6448 | 0.6160 | 0.4440 | 0.5854 | 0.5863 |
74
+ | 1.6245 | 18.0 | 9702 | 1.6264 | 0.6301 | 0.4640 | 0.6015 | 0.6018 |
75
+ | 1.616 | 19.0 | 10241 | 1.6145 | 0.6578 | 0.4933 | 0.6253 | 0.6251 |
76
+ | 1.5914 | 20.0 | 10780 | 1.6073 | 0.6587 | 0.4979 | 0.6269 | 0.6270 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.44.2
82
+ - Pytorch 2.1.0+cu118
83
+ - Datasets 3.0.1
84
+ - Tokenizers 0.19.1