Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- AntBulletEnv-v0
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: A2C
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: AntBulletEnv-v0
|
| 16 |
+
type: AntBulletEnv-v0
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 1842.36 +/- 99.88
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
| 25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:725f5890d76c7e10bed0305364e8ce49257e9da9471af8f3cc915c3e39542d6d
|
| 3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4dd12bb80>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4dd12bc10>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4dd12bca0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4dd12bd30>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb4dd12bdc0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb4dd12be50>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4dd12bee0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4dd12bf70>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb4dd132040>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4dd1320d0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4dd132160>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4dd1321f0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb4dd1313c0>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {
|
| 24 |
+
":type:": "<class 'dict'>",
|
| 25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
| 26 |
+
"log_std_init": -2,
|
| 27 |
+
"ortho_init": false,
|
| 28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
| 29 |
+
"optimizer_kwargs": {
|
| 30 |
+
"alpha": 0.99,
|
| 31 |
+
"eps": 1e-05,
|
| 32 |
+
"weight_decay": 0
|
| 33 |
+
}
|
| 34 |
+
},
|
| 35 |
+
"observation_space": {
|
| 36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
| 38 |
+
"dtype": "float32",
|
| 39 |
+
"_shape": [
|
| 40 |
+
28
|
| 41 |
+
],
|
| 42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
| 44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
| 45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
| 46 |
+
"_np_random": null
|
| 47 |
+
},
|
| 48 |
+
"action_space": {
|
| 49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 51 |
+
"dtype": "float32",
|
| 52 |
+
"_shape": [
|
| 53 |
+
8
|
| 54 |
+
],
|
| 55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
| 56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
| 57 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 58 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 59 |
+
"_np_random": null
|
| 60 |
+
},
|
| 61 |
+
"n_envs": 4,
|
| 62 |
+
"num_timesteps": 2000000,
|
| 63 |
+
"_total_timesteps": 2000000,
|
| 64 |
+
"_num_timesteps_at_start": 0,
|
| 65 |
+
"seed": null,
|
| 66 |
+
"action_noise": null,
|
| 67 |
+
"start_time": 1679064754414068619,
|
| 68 |
+
"learning_rate": 0.00096,
|
| 69 |
+
"tensorboard_log": null,
|
| 70 |
+
"lr_schedule": {
|
| 71 |
+
":type:": "<class 'function'>",
|
| 72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 73 |
+
},
|
| 74 |
+
"_last_obs": {
|
| 75 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGvmtb2mmdo+Y6I8PwAr+z4yqpC+CoPvPg9mBb/GATG+z1Spv2vbNz/Yg6o+/HByP+zan713fCo/5c8cP9syCj0tVro/1SXnvmJ9er9hIr4+vqADvoKapT9/zsw/o8EBv3oEJz8e9Jk+mF/IvzZppz9KQnc/y0wvvynFo77rDcI+tCejv3DN7j4mCGO/KexwvwUVOz8sXTU/zX+ePpgFhL/3sGY9KNpJPsvSGz+OeY29qMNVv8aaG79eSve+Y+QFPvjYMz2wLTs9vFxIv9CNCLt6BCc/HvSZPt+IIz/eu0O/+CXIP2Ffzr7Vem09kIjvPg1wgL5CAIS/T5muv/Zvcr+Ztfo+8R2Pv1fbxr3ul5+/X7wvPvUSMT/lQtw+CqRhv56Ger96ANs/jvaOvhIii7/mJDK911RJPqv4tzvzVqs/7DHEvx70mT6YX8i/3rtDvxsZJj6MWw++IfyoPtfbHkANWTW/UMC0PSXYPT49uWK/8DGKv0Pqvz+w8H0/lx54QMydZj54ezI/Nsr+PkfaJL0EqMA/oJjMvu8oo77xvBu/AWB8P+7GHkCZlCBAgHOyPuwxxL8e9Jk+34gjPzZppz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
| 77 |
+
},
|
| 78 |
+
"_last_episode_starts": {
|
| 79 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
| 81 |
+
},
|
| 82 |
+
"_last_original_obs": {
|
| 83 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOmnw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOv3kvQAAAACP+/6/AAAAAJgf0D0AAAAADCD+PwAAAACyxmy9AAAAAJ/p9j8AAAAAzu4WOwAAAAB4Zua/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHq2ptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNWysz0AAAAAh8PkvwAAAADILOa9AAAAAIeK6j8AAAAAK50yPQAAAAAJ6e4/AAAAAIr1hj0AAAAAqln3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN49TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFhAe+AAAAAIER4r8AAAAAe4hfPQAAAACZz/A/AAAAAKYM2j0AAAAAVI7/PwAAAADTYqq8AAAAAE5h278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0kL+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3oL9PQAAAADlg/K/AAAAAGfiwTwAAAAAzlXtPwAAAACPfgi+AAAAAOSp6z8AAAAAyPAlPAAAAAD2ctu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
| 85 |
+
},
|
| 86 |
+
"_episode_num": 0,
|
| 87 |
+
"use_sde": true,
|
| 88 |
+
"sde_sample_freq": -1,
|
| 89 |
+
"_current_progress_remaining": 0.0,
|
| 90 |
+
"ep_info_buffer": {
|
| 91 |
+
":type:": "<class 'collections.deque'>",
|
| 92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqHOe4Cp3qMAWyUTegDjAF0lEdAs4dWpCKJmHV9lChoBkdAmKv0B8x9HGgHTegDaAhHQLOH07HAAQx1fZQoaAZHQJfvWmEXcg1oB03oA2gIR0Czi6ZR4yGjdX2UKGgGR0CZ2T8K5TZQaAdN6ANoCEdAs4wEiml67nV9lChoBkdAmaw2X1J172gHTegDaAhHQLONSZaFEiN1fZQoaAZHQJ9VX2ys0YVoB03oA2gIR0CzjfgyuZCwdX2UKGgGR0CdpLa+N96UaAdN6ANoCEdAs5NWDcuannV9lChoBkdAnrum2sq8UWgHTegDaAhHQLOTrHYHxBp1fZQoaAZHQJtxz8iwB5poB03oA2gIR0CzlOnqAz55dX2UKGgGR0CeumITXarWaAdN6ANoCEdAs5ViI3zcynV9lChoBkdAnSsQxagVXWgHTegDaAhHQLOY/MURFql1fZQoaAZHQJ5aO7HyVfNoB03oA2gIR0CzmVTF+/g0dX2UKGgGR0Cd9Y44ZMtcaAdN6ANoCEdAs5qP6VMVUXV9lChoBkdAnbTDkQwsXmgHTegDaAhHQLObCB9Cu2Z1fZQoaAZHQJ0mWkYXO4ZoB03oA2gIR0CzoFCpFTegdX2UKGgGR0CbNPXtjTa1aAdN6ANoCEdAs6DfeuV5bHV9lChoBkdAnheO40/GEWgHTegDaAhHQLOiLkmQbMp1fZQoaAZHQJ782nFYMfBoB03oA2gIR0Czoqa2KEWZdX2UKGgGR0CdJ59/jKgaaAdN6ANoCEdAs6ZfWXkYGnV9lChoBkdAnPgNYwIt2GgHTegDaAhHQLOmt7bL2Yh1fZQoaAZHQJu1pWo3rD9oB03oA2gIR0CzqAwnYxtYdX2UKGgGR0Cadt3evZAZaAdN6ANoCEdAs6iOVv/BFnV9lChoBkdAnDvw+pwS8WgHTegDaAhHQLOtEI5HVgB1fZQoaAZHQJuv2lFc6eZoB03oA2gIR0CzraNx+8XfdX2UKGgGR0CdhID7ZWaMaAdN6ANoCEdAs6+7VVghKXV9lChoBkdAm5Qlxn3+M2gHTegDaAhHQLOwN189fTl1fZQoaAZHQJq2r3Ehq0toB03oA2gIR0Czs9ktuk1udX2UKGgGR0CbcvQKrq+raAdN6ANoCEdAs7Qu8cuJ13V9lChoBkdAmXR4WtU4rGgHTegDaAhHQLO1awEhaDB1fZQoaAZHQJ78JXKbKA9oB03oA2gIR0CzteNM0xdqdX2UKGgGR0CdsBD5TIeYaAdN6ANoCEdAs7mAvmHP/3V9lChoBkdAnQbb5hz/62gHTegDaAhHQLO58IWgvlF1fZQoaAZHQKAU0a1kUbloB03oA2gIR0Czu+BzaK1pdX2UKGgGR0CepruyNXHSaAdN6ANoCEdAs7yn93r2QHV9lChoBkdAnEctsabWmWgHTegDaAhHQLPBAETxoZh1fZQoaAZHQJoZWf16E8JoB03oA2gIR0CzwVVLzwtrdX2UKGgGR0CX32JVbRnfaAdN6ANoCEdAs8KWoegctHV9lChoBkdAnBvmcz67/WgHTegDaAhHQLPDEnFYMfB1fZQoaAZHQJ4rEtlI3BJoB03oA2gIR0Czxrcj7hvSdX2UKGgGR0CDlUcJ+lTFaAdN6ANoCEdAs8cQ3XI2fnV9lChoBkdAnQt1Euxrz2gHTegDaAhHQLPISFzdUKl1fZQoaAZHQJg5RnOB19xoB03oA2gIR0CzyQEYTCcgdX2UKGgGR0Cdxns3yZrpaAdN6ANoCEdAs85KCcwxnHV9lChoBkdAnj6vmknCwmgHTegDaAhHQLPOns1baAZ1fZQoaAZHQKDuPimVJMBoB03oA2gIR0Czz9x4ptrLdX2UKGgGR0Ca5aoCMgloaAdN6ANoCEdAs9BU5MlC1XV9lChoBkdAoFhfWFvhqGgHTegDaAhHQLPT9vMr3Cd1fZQoaAZHQJ2uNZuAI6doB03oA2gIR0Cz1E2O+7DmdX2UKGgGR0Cfyoq46Oo6aAdN6ANoCEdAs9WOyeI2wXV9lChoBkdAncPFSXMQmWgHTegDaAhHQLPWCN0vGqB1fZQoaAZHQKBfLYigTRJoB03oA2gIR0Cz24a/mDDkdX2UKGgGR0CfAsE/jbSJaAdN6ANoCEdAs9vkLofSyHV9lChoBkdAnup0Q5FPSGgHTegDaAhHQLPdKKAavRt1fZQoaAZHQJx2U6hg3LpoB03oA2gIR0Cz3a2ICU5ddX2UKGgGR0Ce5S/9Hc1waAdN6ANoCEdAs+Fd1xKg7HV9lChoBkdAnvMt5le4TmgHTegDaAhHQLPhtq0dBB11fZQoaAZHQJvW/leWv8toB03oA2gIR0Cz4vN5yEL6dX2UKGgGR0CetN5IH1OCaAdN6ANoCEdAs+NqILw4KnV9lChoBkdAnwKVS0jTrmgHTegDaAhHQLPn2ojOcDt1fZQoaAZHQJxiBkjHGS9oB03oA2gIR0Cz6G3MlkYodX2UKGgGR0CdXa3JxNqQaAdN6ANoCEdAs+pzatcOb3V9lChoBkdAmzrD7qIJq2gHTegDaAhHQLPq8EQGwA51fZQoaAZHQJ0tuPhhpg1oB03oA2gIR0Cz7qR3NcGDdX2UKGgGR0CaMinvUjLTaAdN6ANoCEdAs+8KG8EmpnV9lChoBkdAniNaz7di2GgHTegDaAhHQLPwP4JeE7J1fZQoaAZHQJ71vcHnln1oB03oA2gIR0Cz8LP5+H8CdX2UKGgGR0CeGHnfVI7OaAdN6ANoCEdAs/RQ/QjUu3V9lChoBkdAnAak5hjOLWgHTegDaAhHQLP01K6nR9h1fZQoaAZHQJ96vjaPCEZoB03oA2gIR0Cz9tINiH6/dX2UKGgGR0CZQoIUJv5yaAdN6ANoCEdAs/eaThYNiHV9lChoBkdAnWsFRYRuj2gHTegDaAhHQLP7zqTr3TN1fZQoaAZHQKA8ce6I3zdoB03oA2gIR0Cz/Ce8XenAdX2UKGgGR0CgJhShJyyVaAdN6ANoCEdAs/1z3rUsnXV9lChoBkdAnjvz/lyR0WgHTegDaAhHQLP9695hScd1fZQoaAZHQJ5ECiWVu79oB03oA2gIR0C0AcAdOqNqdX2UKGgGR0Cc+ZvV3EAHaAdN6ANoCEdAtAIZcC5mRXV9lChoBkdAmqilxsEaEWgHTegDaAhHQLQDtO1fE4x1fZQoaAZHQJ52JroGIKtoB03oA2gIR0C0BHL9ZRsNdX2UKGgGR0Cczz9ugpSaaAdN6ANoCEdAtAln4tYjjnV9lChoBkdAnbXyCvovBmgHTegDaAhHQLQJxqpcX3x1fZQoaAZHQJq3PULDye9oB03oA2gIR0C0CxnTZxrBdX2UKGgGR0CeTJLJjlPraAdN6ANoCEdAtAuS2TgVGnV9lChoBkdAm6qXz+WGAWgHTegDaAhHQLQPiVrRBu51fZQoaAZHQJr+hlrdnChoB03oA2gIR0C0D+mpZOi4dX2UKGgGR0CdWHARChN/aAdN6ANoCEdAtBFDueBg/nV9lChoBkdAnQer0e2d/mgHTegDaAhHQLQSE3GXHBF1fZQoaAZHQJuzTYL9deJoB03oA2gIR0C0F88xoIv8dX2UKGgGR0Cd4fTXJ5miaAdN6ANoCEdAtBgrF1jiGXV9lChoBkdAnDyhVdX1amgHTegDaAhHQLQZekhzNll1fZQoaAZHQJwr3e7+T/1oB03oA2gIR0C0GgM4gieNdX2UKGgGR0CbFobPQfITaAdN6ANoCEdAtB3dv2oNu3V9lChoBkdAmbnT7MxGlWgHTegDaAhHQLQeOLA57w91fZQoaAZHQJplbwOOKfpoB03oA2gIR0C0H32rbQC0dX2UKGgGR0Cb7aTpxFRYaAdN6ANoCEdAtB/9aiblR3V9lChoBkdAm7hhje9BbGgHTegDaAhHQLQlw5MDfWN1fZQoaAZHQJ3Jw8aGYa5oB03oA2gIR0C0Jh3jlxOtdX2UKGgGR0Cc3NZ+QU5/aAdN6ANoCEdAtCdzoQnQY3V9lChoBkdAnUGp5u63AmgHTegDaAhHQLQn9BYmsvJ1fZQoaAZHQJvxS1fE4vNoB03oA2gIR0C0K93GCI1tdX2UKGgGR0CadNPxhDw6aAdN6ANoCEdAtCw2Gh24eHVlLg=="
|
| 93 |
+
},
|
| 94 |
+
"ep_success_buffer": {
|
| 95 |
+
":type:": "<class 'collections.deque'>",
|
| 96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 97 |
+
},
|
| 98 |
+
"_n_updates": 62500,
|
| 99 |
+
"n_steps": 8,
|
| 100 |
+
"gamma": 0.99,
|
| 101 |
+
"gae_lambda": 0.9,
|
| 102 |
+
"ent_coef": 0.0,
|
| 103 |
+
"vf_coef": 0.4,
|
| 104 |
+
"max_grad_norm": 0.5,
|
| 105 |
+
"normalize_advantage": false
|
| 106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7a20957136fe3fe614840129b44c27f0d96c43c4fce0efb6332e9a95d79256aa
|
| 3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0ee27cc9a6fe5a5c1667f2233fac87d9ebef9da788270cd5b643284aff499b4
|
| 3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.9.16
|
| 3 |
+
- Stable-Baselines3: 1.7.0
|
| 4 |
+
- PyTorch: 1.13.1+cu116
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Gym: 0.21.0
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4dd12bb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4dd12bc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4dd12bca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4dd12bd30>", "_build": "<function ActorCriticPolicy._build at 0x7fb4dd12bdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4dd12be50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb4dd12bee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4dd12bf70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4dd132040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4dd1320d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4dd132160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4dd1321f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb4dd1313c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679064754414068619, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGvmtb2mmdo+Y6I8PwAr+z4yqpC+CoPvPg9mBb/GATG+z1Spv2vbNz/Yg6o+/HByP+zan713fCo/5c8cP9syCj0tVro/1SXnvmJ9er9hIr4+vqADvoKapT9/zsw/o8EBv3oEJz8e9Jk+mF/IvzZppz9KQnc/y0wvvynFo77rDcI+tCejv3DN7j4mCGO/KexwvwUVOz8sXTU/zX+ePpgFhL/3sGY9KNpJPsvSGz+OeY29qMNVv8aaG79eSve+Y+QFPvjYMz2wLTs9vFxIv9CNCLt6BCc/HvSZPt+IIz/eu0O/+CXIP2Ffzr7Vem09kIjvPg1wgL5CAIS/T5muv/Zvcr+Ztfo+8R2Pv1fbxr3ul5+/X7wvPvUSMT/lQtw+CqRhv56Ger96ANs/jvaOvhIii7/mJDK911RJPqv4tzvzVqs/7DHEvx70mT6YX8i/3rtDvxsZJj6MWw++IfyoPtfbHkANWTW/UMC0PSXYPT49uWK/8DGKv0Pqvz+w8H0/lx54QMydZj54ezI/Nsr+PkfaJL0EqMA/oJjMvu8oo77xvBu/AWB8P+7GHkCZlCBAgHOyPuwxxL8e9Jk+34gjPzZppz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACOmnw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAOv3kvQAAAACP+/6/AAAAAJgf0D0AAAAADCD+PwAAAACyxmy9AAAAAJ/p9j8AAAAAzu4WOwAAAAB4Zua/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHq2ptgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNWysz0AAAAAh8PkvwAAAADILOa9AAAAAIeK6j8AAAAAK50yPQAAAAAJ6e4/AAAAAIr1hj0AAAAAqln3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAN49TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFhAe+AAAAAIER4r8AAAAAe4hfPQAAAACZz/A/AAAAAKYM2j0AAAAAVI7/PwAAAADTYqq8AAAAAE5h278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0kL+2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3oL9PQAAAADlg/K/AAAAAGfiwTwAAAAAzlXtPwAAAACPfgi+AAAAAOSp6z8AAAAAyPAlPAAAAAD2ctu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJqHOe4Cp3qMAWyUTegDjAF0lEdAs4dWpCKJmHV9lChoBkdAmKv0B8x9HGgHTegDaAhHQLOH07HAAQx1fZQoaAZHQJfvWmEXcg1oB03oA2gIR0Czi6ZR4yGjdX2UKGgGR0CZ2T8K5TZQaAdN6ANoCEdAs4wEiml67nV9lChoBkdAmaw2X1J172gHTegDaAhHQLONSZaFEiN1fZQoaAZHQJ9VX2ys0YVoB03oA2gIR0CzjfgyuZCwdX2UKGgGR0CdpLa+N96UaAdN6ANoCEdAs5NWDcuannV9lChoBkdAnrum2sq8UWgHTegDaAhHQLOTrHYHxBp1fZQoaAZHQJtxz8iwB5poB03oA2gIR0CzlOnqAz55dX2UKGgGR0CeumITXarWaAdN6ANoCEdAs5ViI3zcynV9lChoBkdAnSsQxagVXWgHTegDaAhHQLOY/MURFql1fZQoaAZHQJ5aO7HyVfNoB03oA2gIR0CzmVTF+/g0dX2UKGgGR0Cd9Y44ZMtcaAdN6ANoCEdAs5qP6VMVUXV9lChoBkdAnbTDkQwsXmgHTegDaAhHQLObCB9Cu2Z1fZQoaAZHQJ0mWkYXO4ZoB03oA2gIR0CzoFCpFTegdX2UKGgGR0CbNPXtjTa1aAdN6ANoCEdAs6DfeuV5bHV9lChoBkdAnheO40/GEWgHTegDaAhHQLOiLkmQbMp1fZQoaAZHQJ782nFYMfBoB03oA2gIR0Czoqa2KEWZdX2UKGgGR0CdJ59/jKgaaAdN6ANoCEdAs6ZfWXkYGnV9lChoBkdAnPgNYwIt2GgHTegDaAhHQLOmt7bL2Yh1fZQoaAZHQJu1pWo3rD9oB03oA2gIR0CzqAwnYxtYdX2UKGgGR0Cadt3evZAZaAdN6ANoCEdAs6iOVv/BFnV9lChoBkdAnDvw+pwS8WgHTegDaAhHQLOtEI5HVgB1fZQoaAZHQJuv2lFc6eZoB03oA2gIR0CzraNx+8XfdX2UKGgGR0CdhID7ZWaMaAdN6ANoCEdAs6+7VVghKXV9lChoBkdAm5Qlxn3+M2gHTegDaAhHQLOwN189fTl1fZQoaAZHQJq2r3Ehq0toB03oA2gIR0Czs9ktuk1udX2UKGgGR0CbcvQKrq+raAdN6ANoCEdAs7Qu8cuJ13V9lChoBkdAmXR4WtU4rGgHTegDaAhHQLO1awEhaDB1fZQoaAZHQJ78JXKbKA9oB03oA2gIR0CzteNM0xdqdX2UKGgGR0CdsBD5TIeYaAdN6ANoCEdAs7mAvmHP/3V9lChoBkdAnQbb5hz/62gHTegDaAhHQLO58IWgvlF1fZQoaAZHQKAU0a1kUbloB03oA2gIR0Czu+BzaK1pdX2UKGgGR0CepruyNXHSaAdN6ANoCEdAs7yn93r2QHV9lChoBkdAnEctsabWmWgHTegDaAhHQLPBAETxoZh1fZQoaAZHQJoZWf16E8JoB03oA2gIR0CzwVVLzwtrdX2UKGgGR0CX32JVbRnfaAdN6ANoCEdAs8KWoegctHV9lChoBkdAnBvmcz67/WgHTegDaAhHQLPDEnFYMfB1fZQoaAZHQJ4rEtlI3BJoB03oA2gIR0Czxrcj7hvSdX2UKGgGR0CDlUcJ+lTFaAdN6ANoCEdAs8cQ3XI2fnV9lChoBkdAnQt1Euxrz2gHTegDaAhHQLPISFzdUKl1fZQoaAZHQJg5RnOB19xoB03oA2gIR0CzyQEYTCcgdX2UKGgGR0Cdxns3yZrpaAdN6ANoCEdAs85KCcwxnHV9lChoBkdAnj6vmknCwmgHTegDaAhHQLPOns1baAZ1fZQoaAZHQKDuPimVJMBoB03oA2gIR0Czz9x4ptrLdX2UKGgGR0Ca5aoCMgloaAdN6ANoCEdAs9BU5MlC1XV9lChoBkdAoFhfWFvhqGgHTegDaAhHQLPT9vMr3Cd1fZQoaAZHQJ2uNZuAI6doB03oA2gIR0Cz1E2O+7DmdX2UKGgGR0Cfyoq46Oo6aAdN6ANoCEdAs9WOyeI2wXV9lChoBkdAncPFSXMQmWgHTegDaAhHQLPWCN0vGqB1fZQoaAZHQKBfLYigTRJoB03oA2gIR0Cz24a/mDDkdX2UKGgGR0CfAsE/jbSJaAdN6ANoCEdAs9vkLofSyHV9lChoBkdAnup0Q5FPSGgHTegDaAhHQLPdKKAavRt1fZQoaAZHQJx2U6hg3LpoB03oA2gIR0Cz3a2ICU5ddX2UKGgGR0Ce5S/9Hc1waAdN6ANoCEdAs+Fd1xKg7HV9lChoBkdAnvMt5le4TmgHTegDaAhHQLPhtq0dBB11fZQoaAZHQJvW/leWv8toB03oA2gIR0Cz4vN5yEL6dX2UKGgGR0CetN5IH1OCaAdN6ANoCEdAs+NqILw4KnV9lChoBkdAnwKVS0jTrmgHTegDaAhHQLPn2ojOcDt1fZQoaAZHQJxiBkjHGS9oB03oA2gIR0Cz6G3MlkYodX2UKGgGR0CdXa3JxNqQaAdN6ANoCEdAs+pzatcOb3V9lChoBkdAmzrD7qIJq2gHTegDaAhHQLPq8EQGwA51fZQoaAZHQJ0tuPhhpg1oB03oA2gIR0Cz7qR3NcGDdX2UKGgGR0CaMinvUjLTaAdN6ANoCEdAs+8KG8EmpnV9lChoBkdAniNaz7di2GgHTegDaAhHQLPwP4JeE7J1fZQoaAZHQJ71vcHnln1oB03oA2gIR0Cz8LP5+H8CdX2UKGgGR0CeGHnfVI7OaAdN6ANoCEdAs/RQ/QjUu3V9lChoBkdAnAak5hjOLWgHTegDaAhHQLP01K6nR9h1fZQoaAZHQJ96vjaPCEZoB03oA2gIR0Cz9tINiH6/dX2UKGgGR0CZQoIUJv5yaAdN6ANoCEdAs/eaThYNiHV9lChoBkdAnWsFRYRuj2gHTegDaAhHQLP7zqTr3TN1fZQoaAZHQKA8ce6I3zdoB03oA2gIR0Cz/Ce8XenAdX2UKGgGR0CgJhShJyyVaAdN6ANoCEdAs/1z3rUsnXV9lChoBkdAnjvz/lyR0WgHTegDaAhHQLP9695hScd1fZQoaAZHQJ5ECiWVu79oB03oA2gIR0C0AcAdOqNqdX2UKGgGR0Cc+ZvV3EAHaAdN6ANoCEdAtAIZcC5mRXV9lChoBkdAmqilxsEaEWgHTegDaAhHQLQDtO1fE4x1fZQoaAZHQJ52JroGIKtoB03oA2gIR0C0BHL9ZRsNdX2UKGgGR0Cczz9ugpSaaAdN6ANoCEdAtAln4tYjjnV9lChoBkdAnbXyCvovBmgHTegDaAhHQLQJxqpcX3x1fZQoaAZHQJq3PULDye9oB03oA2gIR0C0CxnTZxrBdX2UKGgGR0CeTJLJjlPraAdN6ANoCEdAtAuS2TgVGnV9lChoBkdAm6qXz+WGAWgHTegDaAhHQLQPiVrRBu51fZQoaAZHQJr+hlrdnChoB03oA2gIR0C0D+mpZOi4dX2UKGgGR0CdWHARChN/aAdN6ANoCEdAtBFDueBg/nV9lChoBkdAnQer0e2d/mgHTegDaAhHQLQSE3GXHBF1fZQoaAZHQJuzTYL9deJoB03oA2gIR0C0F88xoIv8dX2UKGgGR0Cd4fTXJ5miaAdN6ANoCEdAtBgrF1jiGXV9lChoBkdAnDyhVdX1amgHTegDaAhHQLQZekhzNll1fZQoaAZHQJwr3e7+T/1oB03oA2gIR0C0GgM4gieNdX2UKGgGR0CbFobPQfITaAdN6ANoCEdAtB3dv2oNu3V9lChoBkdAmbnT7MxGlWgHTegDaAhHQLQeOLA57w91fZQoaAZHQJplbwOOKfpoB03oA2gIR0C0H32rbQC0dX2UKGgGR0Cb7aTpxFRYaAdN6ANoCEdAtB/9aiblR3V9lChoBkdAm7hhje9BbGgHTegDaAhHQLQlw5MDfWN1fZQoaAZHQJ3Jw8aGYa5oB03oA2gIR0C0Jh3jlxOtdX2UKGgGR0Cc3NZ+QU5/aAdN6ANoCEdAtCdzoQnQY3V9lChoBkdAnUGp5u63AmgHTegDaAhHQLQn9BYmsvJ1fZQoaAZHQJvxS1fE4vNoB03oA2gIR0C0K93GCI1tdX2UKGgGR0CadNPxhDw6aAdN6ANoCEdAtCw2Gh24eHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a7e2093eb3e1b12386502b835bbdc49b486a7ee970c55deecdf26a53aafd655
|
| 3 |
+
size 1236987
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 1842.3626704453375, "std_reward": 99.87808463688553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T16:04:52.730093"}
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c51e9ad49a1d5d0e8b6aca3a2b907deff4981485ff5d38c1f7b3446524af5e0
|
| 3 |
+
size 2136
|