Morgan Funtowicz
commited on
Commit
·
38fa9fc
1
Parent(s):
69894ec
feat(embeddings): expose some more to Python and return corresponding embedding (with copy for now)
Browse files- handler.py +31 -12
handler.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import platform
|
|
|
|
| 2 |
|
| 3 |
import torch
|
| 4 |
from loguru import logger
|
|
@@ -7,6 +8,23 @@ from hfendpoints.openai.embeddings import Embedding, EmbeddingEndpoint, Embeddin
|
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
|
| 9 |
from hfendpoints import EndpointConfig, Handler, __version__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
class SentenceTransformerHandler(Handler):
|
|
@@ -32,21 +50,22 @@ class SentenceTransformerHandler(Handler):
|
|
| 32 |
else:
|
| 33 |
self._model = torch.compile(self._model)
|
| 34 |
|
| 35 |
-
@torch.compile
|
| 36 |
-
def forward(self, documents: str):
|
| 37 |
-
# TODO: Ask Tom how to do this better without tokenizing twice?
|
| 38 |
-
tokens = self._model.tokenize(documents)
|
| 39 |
-
vectors = self._model.encode(documents, output_value="sentence_embedding", normalize_embeddings=True)
|
| 40 |
-
|
| 41 |
-
return tokens, vectors
|
| 42 |
-
|
| 43 |
async def __call__(self, request: EmbeddingRequest, ctx: Context) -> EmbeddingResponse:
|
| 44 |
-
with torch.backends.mkldnn.verbose(
|
| 45 |
with torch.inference_mode(), torch.amp.autocast("cpu", dtype=torch.float32):
|
|
|
|
| 46 |
vectors = self._model.encode(request.input)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
def entrypoint():
|
|
|
|
| 1 |
import platform
|
| 2 |
+
from typing import Union, Sequence, Sized
|
| 3 |
|
| 4 |
import torch
|
| 5 |
from loguru import logger
|
|
|
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
|
| 10 |
from hfendpoints import EndpointConfig, Handler, __version__
|
| 11 |
+
from torch.backends.mkldnn import VERBOSE_ON_CREATION, VERBOSE_OFF
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_usage(tokens: Union[Sized, Sequence[Sized]], is_batched: bool) -> Usage:
|
| 16 |
+
"""
|
| 17 |
+
Compute the number of processed tokens and return as Usage object matching OpenAI
|
| 18 |
+
:param tokens: List or nested List of tokens
|
| 19 |
+
:param is_batched: Flag indicating if the original request contained batched inputs
|
| 20 |
+
:return: Usage object matching OpenAI specifications
|
| 21 |
+
"""
|
| 22 |
+
if is_batched:
|
| 23 |
+
num_tokens = sum(len(document) for document in tokens)
|
| 24 |
+
else:
|
| 25 |
+
num_tokens = len(tokens)
|
| 26 |
+
|
| 27 |
+
return Usage(prompt_tokens=num_tokens, total_tokens=num_tokens)
|
| 28 |
|
| 29 |
|
| 30 |
class SentenceTransformerHandler(Handler):
|
|
|
|
| 50 |
else:
|
| 51 |
self._model = torch.compile(self._model)
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
async def __call__(self, request: EmbeddingRequest, ctx: Context) -> EmbeddingResponse:
|
| 54 |
+
with torch.backends.mkldnn.verbose(VERBOSE_ON_CREATION if self._config.is_debug else VERBOSE_OFF):
|
| 55 |
with torch.inference_mode(), torch.amp.autocast("cpu", dtype=torch.float32):
|
| 56 |
+
tokens = self._model.tokenize(request.input)
|
| 57 |
vectors = self._model.encode(request.input)
|
| 58 |
+
|
| 59 |
+
embeddings = [[None] * len(request)]
|
| 60 |
+
if not request.is_batched:
|
| 61 |
+
embeddings[0] = Embedding(index=0, embedding=vectors.tolist())
|
| 62 |
+
else:
|
| 63 |
+
for (index, embedding) in enumerate(vectors.tolist()):
|
| 64 |
+
embedding = Embedding(index=index, embedding=embedding)
|
| 65 |
+
embeddings[index] = embedding
|
| 66 |
+
|
| 67 |
+
usage = get_usage(tokens, request.is_batched)
|
| 68 |
+
return EmbeddingResponse(model=self._model_name, embeddings=embeddings, usage=usage)
|
| 69 |
|
| 70 |
|
| 71 |
def entrypoint():
|