# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import List, Optional, Union import torch from PIL import Image from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, DiffusionPipeline from diffusers.loaders import FromSingleFileMixin, ZImageLoraLoaderMixin from diffusers.image_processor import VaeImageProcessor from diffusers.utils import logging from diffusers.pipelines.z_image.pipeline_z_image import calculate_shift from diffusers.pipelines.z_image.pipeline_output import ZImagePipelineOutput from diffusers_local.z_image_control_transformer_2d import ZImageControlTransformer2DModel from transformers import AutoTokenizer, PreTrainedModel from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift def calculate_shift( image_seq_len, base_seq_len: int = 256, max_seq_len: int = 4096, base_shift: float = 0.5, max_shift: float = 1.15, ): m = (max_shift - base_shift) / (max_seq_len - base_seq_len) b = base_shift - m * base_seq_len mu = image_seq_len * m + b return mu # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class ZImageControlUnifiedPipeline(DiffusionPipeline, ZImageLoraLoaderMixin, FromSingleFileMixin): _model_cpu_offload_seq = "text_encoder->transformer->vae" _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds"] def __init__( self, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: PreTrainedModel, tokenizer: AutoTokenizer, transformer: ZImageControlTransformer2DModel, ): self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) def _encode_prompt(self, prompt: str, device: torch.device, max_sequence_length: int) -> torch.Tensor: messages = [{"role": "user", "content": prompt}] if hasattr(self.tokenizer, "apply_chat_template"): prompt_formatted = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True) else: prompt_formatted = prompt text_inputs = self.tokenizer(prompt_formatted, padding="max_length", max_length=max_sequence_length, truncation=True, return_tensors="pt").to(device) prompt_masks = text_inputs.attention_mask.bool() with torch.no_grad(): prompt_embeds = self.text_encoder(input_ids=text_inputs.input_ids, attention_mask=prompt_masks, output_hidden_states=True).hidden_states[-2] return prompt_embeds[0][prompt_masks[0]] def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels, height // self.vae_scale_factor, width // self.vae_scale_factor) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) return latents * self.scheduler.init_noise_sigma if hasattr(self.scheduler, "init_noise_sigma") else latents def prepare_control_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype): image = self.image_processor.preprocess(image, height=height, width=width).to(device=device, dtype=dtype) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) return image @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], image: Union[torch.Tensor, Image.Image], negative_prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 0.0, controlnet_conditioning_scale: float = 1.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: str = "pil", return_dict: bool = True, **kwargs, ): device = self._execution_device height = height or image.height width = width or image.width # 1. Prompt adjustment and batch size if isinstance(prompt, str): prompt = [prompt] if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] batch_size = len(prompt) * num_images_per_prompt do_cfg = guidance_scale > 0.0 # 2. Encode text # Repeat embeddings if num_images_per_prompt > 1 prompt_embeds_list = [] for p in prompt: embed = self._encode_prompt(p, device, 512) for _ in range(num_images_per_prompt): prompt_embeds_list.append(embed) if do_cfg: if negative_prompt is None: negative_prompt = [""] * len(prompt) neg_embeds_list = [] for np in negative_prompt: embed = self._encode_prompt(np, device, 512) for _ in range(num_images_per_prompt): neg_embeds_list.append(embed) prompt_input = neg_embeds_list + prompt_embeds_list else: prompt_input = prompt_embeds_list # 3. Control image preparation control_tensor = self.prepare_control_image( image, width, height, batch_size, num_images_per_prompt, device, self.vae.dtype ) if len(control_tensor.shape) == 3: control_tensor = control_tensor.unsqueeze(0) with torch.no_grad(): # Encode to latents control_latents = self.vae.encode(control_tensor).latent_dist.mode() control_latents = control_latents * self.vae.config.scaling_factor # Channel fix: 4 channels -> 16 channels if control_latents.shape[1] == 4 and self.transformer.in_channels == 16: control_latents = control_latents.repeat(1, 4, 1, 1) # [B, 16, H, W] control_latents = control_latents.to(dtype=self.transformer.dtype) # Fix dimension: frame dimension [B, 16, 1, H, W] control_latents = control_latents.unsqueeze(2) control_context = list(control_latents.unbind(0)) # Expansion for CFG if do_cfg: control_context_input = control_context * 2 else: control_context_input = control_context # 4. Initial latents latents = self.prepare_latents( batch_size, self.transformer.in_channels, height, width, prompt_embeds_list[0].dtype, device, generator ) latents = latents.to(self.transformer.dtype) # 5. Denoising loop image_seq_len = (height // (self.vae_scale_factor)) * (width // (self.vae_scale_factor)) mu = calculate_shift(image_seq_len) self.scheduler.set_timesteps(num_inference_steps, device=device, mu=mu) for t in self.progress_bar(self.scheduler.timesteps): t_input = t.expand(len(prompt_input)) timestep_norm = (1000.0 - t_input) / 1000.0 latents_input = torch.cat([latents] * 2) if do_cfg else latents # List of [16, 1, H, W] latent_list = list(latents_input.unsqueeze(2).unbind(dim=0)) model_out_list = self.transformer( x=latent_list, t=timestep_norm, cap_feats=prompt_input, control_context=control_context_input, conditioning_scale=controlnet_conditioning_scale, )[0] model_out = torch.stack(model_out_list, dim=0).squeeze(2) if do_cfg: neg_out, pos_out = model_out.chunk(2) noise_pred = neg_out + guidance_scale * (pos_out - neg_out) else: noise_pred = model_out noise_pred = -noise_pred latents = self.scheduler.step(noise_pred, t, latents).prev_sample # 6. Decode if not output_type == "latent": # Pass 16 channels to VAE latents_for_vae = latents.to(self.vae.dtype) latents_for_vae = (latents_for_vae / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents_for_vae, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) else: image = latents self.maybe_free_model_hooks() return ZImagePipelineOutput(images=image)