# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from diffusers.configuration_utils import ConfigMixin,register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention_processor import Attention from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import RMSNorm from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.attention_dispatch import dispatch_attention_fn from diffusers.models.modeling_outputs import Transformer2DModelOutput ADALN_EMBED_DIM = 256 SEQ_MULTI_OF = 32 class TimestepEmbedder(nn.Module): def __init__(self, out_size, mid_size=None, frequency_embedding_size=256): super().__init__() if mid_size is None: mid_size = out_size self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, mid_size, bias=True), nn.SiLU(), nn.Linear(mid_size, out_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): with torch.amp.autocast("cuda", enabled=False): half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) weight_dtype = self.mlp[0].weight.dtype compute_dtype = getattr(self.mlp[0], "compute_dtype", None) if weight_dtype.is_floating_point: t_freq = t_freq.to(weight_dtype) elif compute_dtype is not None: t_freq = t_freq.to(compute_dtype) t_emb = self.mlp(t_freq) return t_emb class ZSingleStreamAttnProcessor: """ Processor for Z-Image single stream attention that adapts the existing Attention class to match the behavior of the original Z-ImageAttention module. """ _attention_backend = None _parallel_config = None def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "ZSingleStreamAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[torch.Tensor] = None, ) -> torch.Tensor: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(-1, (attn.heads, -1)) key = key.unflatten(-1, (attn.heads, -1)) value = value.unflatten(-1, (attn.heads, -1)) # Apply Norms if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: with torch.amp.autocast("cuda", enabled=False): x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(2) x_out = torch.view_as_real(x * freqs_cis).flatten(3) return x_out.type_as(x_in) # todo if freqs_cis is not None: query = apply_rotary_emb(query, freqs_cis) key = apply_rotary_emb(key, freqs_cis) # Cast to correct dtype dtype = query.dtype query, key = query.to(dtype), key.to(dtype) # From [batch, seq_len] to [batch, 1, 1, seq_len] -> broadcast to [batch, heads, seq_len, seq_len] if attention_mask is not None and attention_mask.ndim == 2: attention_mask = attention_mask[:, None, None, :] # Compute joint attention hidden_states = dispatch_attention_fn( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, backend=self._attention_backend, parallel_config=self._parallel_config, ) # Reshape back hidden_states = hidden_states.flatten(2, 3) hidden_states = hidden_states.to(dtype) output = attn.to_out[0](hidden_states) if len(attn.to_out) > 1: # dropout output = attn.to_out[1](output) return output class FeedForward(nn.Module): def __init__(self, dim: int, hidden_dim: int): super().__init__() self.w1 = nn.Linear(dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim, bias=False) def _forward_silu_gating(self, x1, x3): return F.silu(x1) * x3 def forward(self, x): return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x))) def zero_module(module): for p in module.parameters(): nn.init.zeros_(p) return module @maybe_allow_in_graph class ZImageTransformerBlock(nn.Module): def __init__( self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int, norm_eps: float, qk_norm: bool, modulation=True, ): super().__init__() self.dim = dim self.head_dim = dim // n_heads # Refactored to use diffusers Attention with custom processor # Original Z-Image params: dim, n_heads, n_kv_heads, qk_norm self.attention = Attention( query_dim=dim, cross_attention_dim=None, dim_head=dim // n_heads, heads=n_heads, qk_norm="rms_norm" if qk_norm else None, eps=1e-5, bias=False, out_bias=False, processor=ZSingleStreamAttnProcessor(), ) self.feed_forward = FeedForward(dim=dim, hidden_dim=int(dim / 3 * 8)) self.layer_id = layer_id self.attention_norm1 = RMSNorm(dim, eps=norm_eps) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) self.attention_norm2 = RMSNorm(dim, eps=norm_eps) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) self.modulation = modulation if modulation: self.adaLN_modulation = nn.Sequential(nn.Linear(min(dim, ADALN_EMBED_DIM), 4 * dim, bias=True)) def forward( self, x: torch.Tensor, attn_mask: torch.Tensor, freqs_cis: torch.Tensor, adaln_input: Optional[torch.Tensor] = None, ): if self.modulation: assert adaln_input is not None scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2) gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh() scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp # Attention block attn_out = self.attention( self.attention_norm1(x) * scale_msa, attention_mask=attn_mask, freqs_cis=freqs_cis ) x = x + gate_msa * self.attention_norm2(attn_out) # FFN block x = x + gate_mlp * self.ffn_norm2(self.feed_forward(self.ffn_norm1(x) * scale_mlp)) else: # Attention block attn_out = self.attention(self.attention_norm1(x), attention_mask=attn_mask, freqs_cis=freqs_cis) x = x + self.attention_norm2(attn_out) # FFN block x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x))) return x @maybe_allow_in_graph class ZImageControlTransformerBlock(ZImageTransformerBlock): def __init__( self, layer_id: int, dim: int, n_heads: int, n_kv_heads: int, norm_eps: float, qk_norm: bool, modulation=True, block_id=0, ): super().__init__(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation) self.block_id = block_id if block_id == 0: self.before_proj = zero_module(nn.Linear(self.dim, self.dim)) self.after_proj = zero_module(nn.Linear(self.dim, self.dim)) def forward( self, c: torch.Tensor, x: torch.Tensor, attn_mask: torch.Tensor, freqs_cis: torch.Tensor, adaln_input: Optional[torch.Tensor] = None, ): if self.block_id == 0: c = self.before_proj(c) + x all_c = [] else: all_c = list(torch.unbind(c)) c = all_c.pop(-1) c = super().forward(c, attn_mask, freqs_cis, adaln_input) c_skip = self.after_proj(c) all_c += [c_skip, c] c = torch.stack(all_c) return c class FinalLayer(nn.Module): def __init__(self, hidden_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True), ) def forward(self, x, c): scale = 1.0 + self.adaLN_modulation(c) x = self.norm_final(x) * scale.unsqueeze(1) x = self.linear(x) return x class RopeEmbedder: def __init__( self, theta: float = 256.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (64, 128, 128), ): self.theta = theta self.axes_dims = axes_dims self.axes_lens = axes_lens assert len(axes_dims) == len(axes_lens), "axes_dims and axes_lens must have the same length" self.freqs_cis = None @staticmethod def precompute_freqs_cis(dim: List[int], end: List[int], theta: float = 256.0): with torch.device("cpu"): freqs_cis = [] for i, (d, e) in enumerate(zip(dim, end)): freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d)) timestep = torch.arange(e, device=freqs.device, dtype=torch.float64) freqs = torch.outer(timestep, freqs).float() freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64 freqs_cis.append(freqs_cis_i) return freqs_cis def __call__(self, ids: torch.Tensor): assert ids.ndim == 2 assert ids.shape[-1] == len(self.axes_dims) device = ids.device if self.freqs_cis is None: self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta) self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis] else: # Ensure freqs_cis are on the same device as ids if self.freqs_cis[0].device != device: self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis] result = [] for i in range(len(self.axes_dims)): index = ids[:, i] result.append(self.freqs_cis[i][index]) return torch.cat(result, dim=-1) class ZImageControlTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): _supports_gradient_checkpointing = True _no_split_modules = ["ZImageTransformerBlock", "ZImageControlTransformerBlock"] _repeated_blocks = ["ZImageTransformerBlock", "ZImageControlTransformerBlock"] _skip_layerwise_casting_patterns = ["t_embedder", "cap_embedder"] # precision sensitive layers @register_to_config def __init__( self, all_patch_size=(2,), all_f_patch_size=(1,), in_channels=16, dim=3840, n_layers=30, n_refiner_layers=2, n_heads=30, n_kv_heads=30, norm_eps=1e-5, qk_norm=True, cap_feat_dim=2560, rope_theta=256.0, t_scale=1000.0, axes_dims=[32, 48, 48], axes_lens=[1024, 512, 512], control_layers_places: List[int] = [0, 5, 10, 15, 20, 25], control_in_dim=16, ) -> None: super().__init__() self.in_channels = in_channels self.out_channels = in_channels self.all_patch_size = all_patch_size self.all_f_patch_size = all_f_patch_size self.dim = dim self.n_heads = n_heads self.rope_theta = rope_theta self.t_scale = t_scale self.gradient_checkpointing = False assert len(all_patch_size) == len(all_f_patch_size) all_x_embedder = {} all_final_layer = {} for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)): x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * in_channels, dim, bias=True) all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder final_layer = FinalLayer(dim, patch_size * patch_size * f_patch_size * self.out_channels) all_final_layer[f"{patch_size}-{f_patch_size}"] = final_layer self.all_x_embedder = nn.ModuleDict(all_x_embedder) self.all_final_layer = nn.ModuleDict(all_final_layer) self.noise_refiner = nn.ModuleList( [ ZImageTransformerBlock( 1000 + layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation=True, ) for layer_id in range(n_refiner_layers) ] ) self.context_refiner = nn.ModuleList( [ ZImageTransformerBlock( layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation=False, ) for layer_id in range(n_refiner_layers) ] ) self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024) self.cap_embedder = nn.Sequential(RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, dim, bias=True)) self.x_pad_token = nn.Parameter(torch.empty((1, dim))) self.cap_pad_token = nn.Parameter(torch.empty((1, dim))) self.layers = nn.ModuleList( [ ZImageTransformerBlock(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm) for layer_id in range(n_layers) ] ) head_dim = dim // n_heads assert head_dim == sum(axes_dims) self.axes_dims = axes_dims self.axes_lens = axes_lens self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens) self.control_layers_places = [i for i in range(0, self.n_layers, 2)] if control_layers_places is None else control_layers_places self.control_in_dim = self.dim if control_in_dim is None else control_in_dim assert 0 in self.control_layers_places # control blocks self.control_layers = nn.ModuleList( [ ZImageControlTransformerBlock(i, dim, n_heads, n_kv_heads, norm_eps, qk_norm, block_id=i) for i in self.control_layers_places ] ) # control patch embeddings all_x_embedder = {} for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)): x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True) all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder self.control_all_x_embedder = nn.ModuleDict(all_x_embedder) self.control_noise_refiner = nn.ModuleList( [ ZImageTransformerBlock( 1000 + layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation=True, ) for layer_id in range(n_refiner_layers) ] ) def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]: pH = pW = patch_size pF = f_patch_size bsz = len(x) assert len(size) == bsz for i in range(bsz): F, H, W = size[i] ori_len = (F // pF) * (H // pH) * (W // pW) # "f h w pf ph pw c -> c (f pf) (h ph) (w pw)" x[i] = ( x[i][:ori_len] .view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels) .permute(6, 0, 3, 1, 4, 2, 5) .reshape(self.out_channels, F, H, W) ) return x @staticmethod def create_coordinate_grid(size, start=None, device=None): if start is None: start = (0 for _ in size) axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)] grids = torch.meshgrid(axes, indexing="ij") return torch.stack(grids, dim=-1) def patchify_and_embed( self, all_image: List[torch.Tensor], all_cap_feats: List[torch.Tensor], patch_size: int, f_patch_size: int, ): pH = pW = patch_size pF = f_patch_size device = all_image[0].device all_image_out = [] all_image_size = [] all_image_pos_ids = [] all_image_pad_mask = [] all_cap_pos_ids = [] all_cap_pad_mask = [] all_cap_feats_out = [] for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)): ### Process Caption cap_ori_len = len(cap_feat) cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF # padded position ids cap_padded_pos_ids = self.create_coordinate_grid( size=(cap_ori_len + cap_padding_len, 1, 1), start=(1, 0, 0), device=device, ).flatten(0, 2) all_cap_pos_ids.append(cap_padded_pos_ids) # pad mask cap_pad_mask = torch.cat( [ torch.zeros((cap_ori_len,), dtype=torch.bool, device=device), torch.ones((cap_padding_len,), dtype=torch.bool, device=device), ], dim=0, ) all_cap_pad_mask.append( cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device) ) # padded feature cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0) all_cap_feats_out.append(cap_padded_feat) ### Process Image C, F, H, W = image.size() all_image_size.append((F, H, W)) F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW) # "c f pf h ph w pw -> (f h w) (pf ph pw c)" image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C) image_ori_len = len(image) image_padding_len = (-image_ori_len) % SEQ_MULTI_OF image_ori_pos_ids = self.create_coordinate_grid( size=(F_tokens, H_tokens, W_tokens), start=(cap_ori_len + cap_padding_len + 1, 0, 0), device=device, ).flatten(0, 2) image_padded_pos_ids = torch.cat( [ image_ori_pos_ids, self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device) .flatten(0, 2) .repeat(image_padding_len, 1), ], dim=0, ) all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids) # pad mask image_pad_mask = torch.cat( [ torch.zeros((image_ori_len,), dtype=torch.bool, device=device), torch.ones((image_padding_len,), dtype=torch.bool, device=device), ], dim=0, ) all_image_pad_mask.append( image_pad_mask if image_padding_len > 0 else torch.zeros((image_ori_len,), dtype=torch.bool, device=device) ) # padded feature image_padded_feat = torch.cat( [image, image[-1:].repeat(image_padding_len, 1)], dim=0, ) all_image_out.append(image_padded_feat if image_padding_len > 0 else image) return ( all_image_out, all_cap_feats_out, all_image_size, all_image_pos_ids, all_cap_pos_ids, all_image_pad_mask, all_cap_pad_mask, ) def patchify( self, all_image: List[torch.Tensor], patch_size: int, f_patch_size: int, ): pH = pW = patch_size pF = f_patch_size all_image_out = [] for i, image in enumerate(all_image): ### Process Image C, F, H, W = image.size() F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW) # "c f pf h ph w pw -> (f h w) (pf ph pw c)" image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C) image_ori_len = len(image) image_padding_len = (-image_ori_len) % SEQ_MULTI_OF # padded feature image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0) all_image_out.append(image_padded_feat) return all_image_out def forward( self, x: List[torch.Tensor], t, cap_feats: List[torch.Tensor], patch_size=2, f_patch_size=1, control_context: Optional[List[torch.Tensor]] = None, conditioning_scale: float = 1.0, return_dict: bool = True, ): assert patch_size in self.all_patch_size assert f_patch_size in self.all_f_patch_size bsz = len(x) device = x[0].device t = t * self.t_scale t = self.t_embedder(t) ( x, cap_feats, x_size, x_pos_ids, cap_pos_ids, x_inner_pad_mask, cap_inner_pad_mask, ) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size) # x embed & refine x_item_seqlens = [len(_) for _ in x] assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens) x_max_item_seqlen = max(x_item_seqlens) x = torch.cat(x, dim=0) x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x) # Match t_embedder output dtype to x for layerwise casting compatibility adaln_input = t.type_as(x) x[torch.cat(x_inner_pad_mask)] = self.x_pad_token.to(x.dtype) x = list(x.split(x_item_seqlens, dim=0)) x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split([len(_) for _ in x_pos_ids], dim=0)) x = pad_sequence(x, batch_first=True, padding_value=0.0) x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0) # Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors x_freqs_cis = x_freqs_cis[:, : x.shape[1]] x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device) for i, seq_len in enumerate(x_item_seqlens): x_attn_mask[i, :seq_len] = 1 if torch.is_grad_enabled() and self.gradient_checkpointing: for layer in self.noise_refiner: x = self._gradient_checkpointing_func(layer, x, x_attn_mask, x_freqs_cis, adaln_input) else: for layer in self.noise_refiner: x = layer(x, x_attn_mask, x_freqs_cis, adaln_input) # cap embed & refine cap_item_seqlens = [len(_) for _ in cap_feats] cap_max_item_seqlen = max(cap_item_seqlens) cap_feats = torch.cat(cap_feats, dim=0) cap_feats = self.cap_embedder(cap_feats) cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token.to(dtype=cap_feats.dtype) cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0)) cap_freqs_cis = list( self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split([len(_) for _ in cap_pos_ids], dim=0) ) cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0) cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0) # Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors cap_freqs_cis = cap_freqs_cis[:, : cap_feats.shape[1]] cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device) for i, seq_len in enumerate(cap_item_seqlens): cap_attn_mask[i, :seq_len] = 1 if torch.is_grad_enabled() and self.gradient_checkpointing: for layer in self.context_refiner: cap_feats = self._gradient_checkpointing_func(layer, cap_feats, cap_attn_mask, cap_freqs_cis) else: for layer in self.context_refiner: cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis) # unified unified = [] unified_freqs_cis = [] for i in range(bsz): x_len = x_item_seqlens[i] cap_len = cap_item_seqlens[i] unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]])) unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]])) unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)] assert unified_item_seqlens == [len(_) for _ in unified] unified_max_item_seqlen = max(unified_item_seqlens) unified = pad_sequence(unified, batch_first=True, padding_value=0.0) unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0) unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device) for i, seq_len in enumerate(unified_item_seqlens): unified_attn_mask[i, :seq_len] = 1 ## ControlNet start controlnet_block_samples = None if control_context is not None: control_context = self.patchify(control_context, patch_size, f_patch_size) control_context = torch.cat(control_context, dim=0) control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context) control_context[torch.cat(x_inner_pad_mask)] = self.x_pad_token control_context = list(control_context.split(x_item_seqlens, dim=0)) control_context = pad_sequence(control_context, batch_first=True, padding_value=0.0) if torch.is_grad_enabled() and self.gradient_checkpointing: for layer in self.control_noise_refiner: control_context = self._gradient_checkpointing_func( layer, control_context, x_attn_mask, x_freqs_cis, adaln_input ) else: for layer in self.control_noise_refiner: control_context = layer(control_context, x_attn_mask, x_freqs_cis, adaln_input) # unified control_context_unified = [] for i in range(bsz): x_len = x_item_seqlens[i] cap_len = cap_item_seqlens[i] control_context_unified.append(torch.cat([control_context[i][:x_len], cap_feats[i][:cap_len]])) control_context_unified = pad_sequence(control_context_unified, batch_first=True, padding_value=0.0) for layer in self.control_layers: if torch.is_grad_enabled() and self.gradient_checkpointing: control_context_unified = self._gradient_checkpointing_func( layer, control_context_unified, unified, unified_attn_mask, unified_freqs_cis, adaln_input ) else: control_context_unified = layer( control_context_unified, unified, unified_attn_mask, unified_freqs_cis, adaln_input ) hints = torch.unbind(control_context_unified)[:-1] controlnet_block_samples = { layer_idx: hints[idx] * conditioning_scale for idx, layer_idx in enumerate(self.control_layers_places) } if torch.is_grad_enabled() and self.gradient_checkpointing: for layer_idx, layer in enumerate(self.layers): unified = self._gradient_checkpointing_func( layer, unified, unified_attn_mask, unified_freqs_cis, adaln_input ) if controlnet_block_samples is not None: if layer_idx in controlnet_block_samples: unified = unified + controlnet_block_samples[layer_idx] else: for layer_idx, layer in enumerate(self.layers): unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input) if controlnet_block_samples is not None: if layer_idx in controlnet_block_samples: unified = unified + controlnet_block_samples[layer_idx] unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input) unified = list(unified.unbind(dim=0)) x = self.unpatchify(unified, x_size, patch_size, f_patch_size) if not return_dict: return (x,) return Transformer2DModelOutput(sample=x)