z-image-control-turbo-unified / diffusers_local /z_image_control_transformer_2d.py
elismasilva's picture
removed autocast in model
35ac2cd
# Copyright 2025 Alibaba Z-Image Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
from diffusers.configuration_utils import ConfigMixin,register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention_processor import Attention
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import RMSNorm
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.attention_dispatch import dispatch_attention_fn
from diffusers.models.modeling_outputs import Transformer2DModelOutput
ADALN_EMBED_DIM = 256
SEQ_MULTI_OF = 32
class TimestepEmbedder(nn.Module):
def __init__(self, out_size, mid_size=None, frequency_embedding_size=256):
super().__init__()
if mid_size is None:
mid_size = out_size
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, mid_size, bias=True),
nn.SiLU(),
nn.Linear(mid_size, out_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half
)
args = t[:, None] * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
weight_dtype = self.mlp[0].weight.dtype
compute_dtype = getattr(self.mlp[0], "compute_dtype", None)
if weight_dtype.is_floating_point:
t_freq = t_freq.to(weight_dtype)
elif compute_dtype is not None:
t_freq = t_freq.to(compute_dtype)
t_emb = self.mlp(t_freq)
return t_emb
class ZSingleStreamAttnProcessor:
"""
Processor for Z-Image single stream attention that adapts the existing Attention class to match the behavior of the
original Z-ImageAttention module.
"""
_attention_backend = None
_parallel_config = None
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"ZSingleStreamAttnProcessor requires PyTorch 2.0. To use it, please upgrade PyTorch to version 2.0 or higher."
)
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
) -> torch.Tensor:
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
query = query.unflatten(-1, (attn.heads, -1))
key = key.unflatten(-1, (attn.heads, -1))
value = value.unflatten(-1, (attn.heads, -1))
# Apply Norms
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE
def apply_rotary_emb(x_in: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
x_in_dtype = x_in.dtype
x_float = x_in.float()
x = torch.view_as_complex(x_float.reshape(*x_float.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
return x_out.to(x_in_dtype)
if freqs_cis is not None:
query = apply_rotary_emb(query, freqs_cis)
key = apply_rotary_emb(key, freqs_cis)
# Cast to correct dtype
dtype = query.dtype
query, key = query.to(dtype), key.to(dtype)
# From [batch, seq_len] to [batch, 1, 1, seq_len] -> broadcast to [batch, heads, seq_len, seq_len]
if attention_mask is not None and attention_mask.ndim == 2:
attention_mask = attention_mask[:, None, None, :]
# Compute joint attention
hidden_states = dispatch_attention_fn(
query,
key,
value,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=False,
backend=self._attention_backend,
parallel_config=self._parallel_config,
)
# Reshape back
hidden_states = hidden_states.flatten(2, 3)
hidden_states = hidden_states.to(dtype)
output = attn.to_out[0](hidden_states)
if len(attn.to_out) > 1: # dropout
output = attn.to_out[1](output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int):
super().__init__()
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
@maybe_allow_in_graph
class ZImageTransformerBlock(nn.Module):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
norm_eps: float,
qk_norm: bool,
modulation=True,
):
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
# Refactored to use diffusers Attention with custom processor
# Original Z-Image params: dim, n_heads, n_kv_heads, qk_norm
self.attention = Attention(
query_dim=dim,
cross_attention_dim=dim,
dim_head=dim // n_heads,
heads=n_heads,
qk_norm="rms_norm" if qk_norm else None,
eps=1e-5,
bias=False,
out_bias=False,
processor=ZSingleStreamAttnProcessor(),
)
self.feed_forward = FeedForward(dim=dim, hidden_dim=int(dim / 3 * 8))
self.layer_id = layer_id
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
self.modulation = modulation
if modulation:
self.adaLN_modulation = nn.Sequential(nn.Linear(min(dim, ADALN_EMBED_DIM), 4 * dim, bias=True))
def forward(
self,
x: torch.Tensor,
attn_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None
):
if self.modulation:
assert adaln_input is not None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).unsqueeze(1).chunk(4, dim=2)
gate_msa, gate_mlp = gate_msa.tanh(), gate_mlp.tanh()
scale_msa, scale_mlp = 1.0 + scale_msa, 1.0 + scale_mlp
# Attention block
attn_out = self.attention(
self.attention_norm1(x) * scale_msa, attention_mask=attn_mask, freqs_cis=freqs_cis
)
x = x + gate_msa * self.attention_norm2(attn_out)
# FFN block
x = x + gate_mlp * self.ffn_norm2(self.feed_forward(self.ffn_norm1(x) * scale_mlp))
else:
# Attention block
attn_out = self.attention(self.attention_norm1(x), attention_mask=attn_mask, freqs_cis=freqs_cis)
x = x + self.attention_norm2(attn_out)
# FFN block
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
return x
@maybe_allow_in_graph
class ZImageControlTransformerBlock(ZImageTransformerBlock):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
norm_eps: float,
qk_norm: bool,
modulation=True,
block_id=0,
):
super().__init__(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm, modulation)
self.block_id = block_id
if block_id == 0:
self.before_proj = zero_module(nn.Linear(self.dim, self.dim))
self.after_proj = zero_module(nn.Linear(self.dim, self.dim))
def forward(
self,
c: torch.Tensor,
x: torch.Tensor,
attn_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor] = None,
):
if self.block_id == 0:
c = self.before_proj(c) + x
all_c = []
else:
all_c = list(torch.unbind(c))
c = all_c.pop(-1)
c = super().forward(c, attn_mask, freqs_cis, adaln_input)
c_skip = self.after_proj(c)
all_c += [c_skip, c]
c = torch.stack(all_c)
return c
class FinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(min(hidden_size, ADALN_EMBED_DIM), hidden_size, bias=True),
)
def forward(self, x, c):
scale = 1.0 + self.adaLN_modulation(c)
x = self.norm_final(x) * scale.unsqueeze(1)
x = self.linear(x)
return x
class RopeEmbedder:
def __init__(
self,
theta: float = 256.0,
axes_dims: List[int] = (16, 56, 56),
axes_lens: List[int] = (64, 128, 128),
):
self.theta = theta
self.axes_dims = axes_dims
self.axes_lens = axes_lens
assert len(axes_dims) == len(axes_lens), "axes_dims and axes_lens must have the same length"
self.freqs_cis = None
@staticmethod
def precompute_freqs_cis(dim: List[int], end: List[int], theta: float = 256.0):
with torch.device("cpu"):
freqs_cis = []
for i, (d, e) in enumerate(zip(dim, end)):
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
freqs = torch.outer(timestep, freqs).float()
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
freqs_cis.append(freqs_cis_i)
return freqs_cis
def __call__(self, ids: torch.Tensor):
assert ids.ndim == 2
assert ids.shape[-1] == len(self.axes_dims)
device = ids.device
if self.freqs_cis is None:
self.freqs_cis = self.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]
else:
# Ensure freqs_cis are on the same device as ids
if self.freqs_cis[0].device != device:
self.freqs_cis = [freqs_cis.to(device) for freqs_cis in self.freqs_cis]
result = []
for i in range(len(self.axes_dims)):
index = ids[:, i]
result.append(self.freqs_cis[i][index])
return torch.cat(result, dim=-1)
class ZImageControlTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
_supports_gradient_checkpointing = True
_no_split_modules = ["ZImageTransformerBlock", "ZImageControlTransformerBlock"]
_repeated_blocks = ["ZImageTransformerBlock", "ZImageControlTransformerBlock"]
_skip_layerwise_casting_patterns = ["t_embedder", "cap_embedder"] # precision sensitive layers
@register_to_config
def __init__(
self,
all_patch_size=(2,),
all_f_patch_size=(1,),
in_channels=16,
dim=3840,
n_layers=30,
n_refiner_layers=2,
n_heads=30,
n_kv_heads=30,
norm_eps=1e-5,
qk_norm=True,
cap_feat_dim=2560,
rope_theta=256.0,
t_scale=1000.0,
axes_dims=[32, 48, 48],
axes_lens=[1024, 512, 512],
control_layers_places: List[int] = [0, 5, 10, 15, 20, 25],
control_in_dim=16,
) -> None:
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.all_patch_size = all_patch_size
self.all_f_patch_size = all_f_patch_size
self.dim = dim
self.n_heads = n_heads
self.rope_theta = rope_theta
self.t_scale = t_scale
self.gradient_checkpointing = False
assert len(all_patch_size) == len(all_f_patch_size)
all_x_embedder = {}
all_final_layer = {}
for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)):
x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * in_channels, dim, bias=True)
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
final_layer = FinalLayer(dim, patch_size * patch_size * f_patch_size * self.out_channels)
all_final_layer[f"{patch_size}-{f_patch_size}"] = final_layer
self.all_x_embedder = nn.ModuleDict(all_x_embedder)
self.all_final_layer = nn.ModuleDict(all_final_layer)
self.noise_refiner = nn.ModuleList(
[
ZImageTransformerBlock(
1000 + layer_id,
dim,
n_heads,
n_kv_heads,
norm_eps,
qk_norm,
modulation=True,
)
for layer_id in range(n_refiner_layers)
]
)
self.context_refiner = nn.ModuleList(
[
ZImageTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
norm_eps,
qk_norm,
modulation=False,
)
for layer_id in range(n_refiner_layers)
]
)
self.t_embedder = TimestepEmbedder(min(dim, ADALN_EMBED_DIM), mid_size=1024)
self.cap_embedder = nn.Sequential(RMSNorm(cap_feat_dim, eps=norm_eps), nn.Linear(cap_feat_dim, dim, bias=True))
self.x_pad_token = nn.Parameter(torch.empty((1, dim)))
self.cap_pad_token = nn.Parameter(torch.empty((1, dim)))
self.layers = nn.ModuleList(
[
ZImageTransformerBlock(layer_id, dim, n_heads, n_kv_heads, norm_eps, qk_norm)
for layer_id in range(n_layers)
]
)
head_dim = dim // n_heads
assert head_dim == sum(axes_dims)
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.rope_embedder = RopeEmbedder(theta=rope_theta, axes_dims=axes_dims, axes_lens=axes_lens)
self.control_layers_places = [i for i in range(0, self.n_layers, 2)] if control_layers_places is None else control_layers_places
self.control_in_dim = self.dim if control_in_dim is None else control_in_dim
assert 0 in self.control_layers_places
# control blocks
self.control_layers = nn.ModuleList(
[
ZImageControlTransformerBlock(i, dim, n_heads, n_kv_heads, norm_eps, qk_norm, block_id=i)
for i in self.control_layers_places
]
)
# control patch embeddings
all_x_embedder = {}
for patch_idx, (patch_size, f_patch_size) in enumerate(zip(all_patch_size, all_f_patch_size)):
x_embedder = nn.Linear(f_patch_size * patch_size * patch_size * self.control_in_dim, dim, bias=True)
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
self.control_all_x_embedder = nn.ModuleDict(all_x_embedder)
self.control_noise_refiner = nn.ModuleList(
[
ZImageTransformerBlock(
1000 + layer_id,
dim,
n_heads,
n_kv_heads,
norm_eps,
qk_norm,
modulation=True,
)
for layer_id in range(n_refiner_layers)
]
)
def unpatchify(self, x: List[torch.Tensor], size: List[Tuple], patch_size, f_patch_size) -> List[torch.Tensor]:
pH = pW = patch_size
pF = f_patch_size
bsz = len(x)
assert len(size) == bsz
for i in range(bsz):
F, H, W = size[i]
ori_len = (F // pF) * (H // pH) * (W // pW)
# "f h w pf ph pw c -> c (f pf) (h ph) (w pw)"
x[i] = (
x[i][:ori_len]
.view(F // pF, H // pH, W // pW, pF, pH, pW, self.out_channels)
.permute(6, 0, 3, 1, 4, 2, 5)
.reshape(self.out_channels, F, H, W)
)
return x
@staticmethod
def create_coordinate_grid(size, start=None, device=None):
if start is None:
start = (0 for _ in size)
axes = [torch.arange(x0, x0 + span, dtype=torch.int32, device=device) for x0, span in zip(start, size)]
grids = torch.meshgrid(axes, indexing="ij")
return torch.stack(grids, dim=-1)
def patchify_and_embed(
self,
all_image: List[torch.Tensor],
all_cap_feats: List[torch.Tensor],
patch_size: int,
f_patch_size: int,
):
pH = pW = patch_size
pF = f_patch_size
device = all_image[0].device
all_image_out = []
all_image_size = []
all_image_pos_ids = []
all_image_pad_mask = []
all_cap_pos_ids = []
all_cap_pad_mask = []
all_cap_feats_out = []
for i, (image, cap_feat) in enumerate(zip(all_image, all_cap_feats)):
### Process Caption
cap_ori_len = len(cap_feat)
cap_padding_len = (-cap_ori_len) % SEQ_MULTI_OF
# padded position ids
cap_padded_pos_ids = self.create_coordinate_grid(
size=(cap_ori_len + cap_padding_len, 1, 1),
start=(1, 0, 0),
device=device,
).flatten(0, 2)
all_cap_pos_ids.append(cap_padded_pos_ids)
# pad mask
cap_pad_mask = torch.cat(
[
torch.zeros((cap_ori_len,), dtype=torch.bool, device=device),
torch.ones((cap_padding_len,), dtype=torch.bool, device=device),
],
dim=0,
)
all_cap_pad_mask.append(
cap_pad_mask if cap_padding_len > 0 else torch.zeros((cap_ori_len,), dtype=torch.bool, device=device)
)
# padded feature
cap_padded_feat = torch.cat([cap_feat, cap_feat[-1:].repeat(cap_padding_len, 1)], dim=0)
all_cap_feats_out.append(cap_padded_feat)
### Process Image
C, F, H, W = image.size()
all_image_size.append((F, H, W))
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
image_ori_len = len(image)
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
image_ori_pos_ids = self.create_coordinate_grid(
size=(F_tokens, H_tokens, W_tokens),
start=(cap_ori_len + cap_padding_len + 1, 0, 0),
device=device,
).flatten(0, 2)
image_padded_pos_ids = torch.cat(
[
image_ori_pos_ids,
self.create_coordinate_grid(size=(1, 1, 1), start=(0, 0, 0), device=device)
.flatten(0, 2)
.repeat(image_padding_len, 1),
],
dim=0,
)
all_image_pos_ids.append(image_padded_pos_ids if image_padding_len > 0 else image_ori_pos_ids)
# pad mask
image_pad_mask = torch.cat(
[
torch.zeros((image_ori_len,), dtype=torch.bool, device=device),
torch.ones((image_padding_len,), dtype=torch.bool, device=device),
],
dim=0,
)
all_image_pad_mask.append(
image_pad_mask
if image_padding_len > 0
else torch.zeros((image_ori_len,), dtype=torch.bool, device=device)
)
# padded feature
image_padded_feat = torch.cat(
[image, image[-1:].repeat(image_padding_len, 1)],
dim=0,
)
all_image_out.append(image_padded_feat if image_padding_len > 0 else image)
return (
all_image_out,
all_cap_feats_out,
all_image_size,
all_image_pos_ids,
all_cap_pos_ids,
all_image_pad_mask,
all_cap_pad_mask,
)
def patchify(
self,
all_image: List[torch.Tensor],
patch_size: int,
f_patch_size: int,
):
pH = pW = patch_size
pF = f_patch_size
all_image_out = []
for i, image in enumerate(all_image):
### Process Image
C, F, H, W = image.size()
F_tokens, H_tokens, W_tokens = F // pF, H // pH, W // pW
image = image.view(C, F_tokens, pF, H_tokens, pH, W_tokens, pW)
# "c f pf h ph w pw -> (f h w) (pf ph pw c)"
image = image.permute(1, 3, 5, 2, 4, 6, 0).reshape(F_tokens * H_tokens * W_tokens, pF * pH * pW * C)
image_ori_len = len(image)
image_padding_len = (-image_ori_len) % SEQ_MULTI_OF
# padded feature
image_padded_feat = torch.cat([image, image[-1:].repeat(image_padding_len, 1)], dim=0)
all_image_out.append(image_padded_feat)
return all_image_out
def forward(
self,
x: List[torch.Tensor],
t,
cap_feats: List[torch.Tensor],
patch_size=2,
f_patch_size=1,
control_context: Optional[List[torch.Tensor]] = None,
conditioning_scale: float = 1.0,
return_dict: bool = True,
):
assert patch_size in self.all_patch_size
assert f_patch_size in self.all_f_patch_size
bsz = len(x)
device = x[0].device
t = t * self.t_scale
t = self.t_embedder(t)
(
x,
cap_feats,
x_size,
x_pos_ids,
cap_pos_ids,
x_inner_pad_mask,
cap_inner_pad_mask,
) = self.patchify_and_embed(x, cap_feats, patch_size, f_patch_size)
# x embed & refine
x_item_seqlens = [len(_) for _ in x]
assert all(_ % SEQ_MULTI_OF == 0 for _ in x_item_seqlens)
x_max_item_seqlen = max(x_item_seqlens)
x = torch.cat(x, dim=0)
x = self.all_x_embedder[f"{patch_size}-{f_patch_size}"](x)
# Match t_embedder output dtype to x for layerwise casting compatibility
adaln_input = t.type_as(x)
x[torch.cat(x_inner_pad_mask)] = self.x_pad_token.to(x.dtype)
x = list(x.split(x_item_seqlens, dim=0))
x_freqs_cis = list(self.rope_embedder(torch.cat(x_pos_ids, dim=0)).split([len(_) for _ in x_pos_ids], dim=0))
x = pad_sequence(x, batch_first=True, padding_value=0.0)
x_freqs_cis = pad_sequence(x_freqs_cis, batch_first=True, padding_value=0.0)
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
x_freqs_cis = x_freqs_cis[:, : x.shape[1]]
x_attn_mask = torch.zeros((bsz, x_max_item_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(x_item_seqlens):
x_attn_mask[i, :seq_len] = 1
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer in self.noise_refiner:
x = self._gradient_checkpointing_func(layer, x, x_attn_mask, x_freqs_cis, adaln_input)
else:
for layer in self.noise_refiner:
x = layer(x, x_attn_mask, x_freqs_cis, adaln_input)
# cap embed & refine
cap_item_seqlens = [len(_) for _ in cap_feats]
cap_max_item_seqlen = max(cap_item_seqlens)
cap_feats = torch.cat(cap_feats, dim=0)
cap_feats = self.cap_embedder(cap_feats)
cap_feats[torch.cat(cap_inner_pad_mask)] = self.cap_pad_token.to(dtype=cap_feats.dtype)
cap_feats = list(cap_feats.split(cap_item_seqlens, dim=0))
cap_freqs_cis = list(
self.rope_embedder(torch.cat(cap_pos_ids, dim=0)).split([len(_) for _ in cap_pos_ids], dim=0)
)
cap_feats = pad_sequence(cap_feats, batch_first=True, padding_value=0.0)
cap_freqs_cis = pad_sequence(cap_freqs_cis, batch_first=True, padding_value=0.0)
# Clarify the length matches to satisfy Dynamo due to "Symbolic Shape Inference" to avoid compilation errors
cap_freqs_cis = cap_freqs_cis[:, : cap_feats.shape[1]]
cap_attn_mask = torch.zeros((bsz, cap_max_item_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(cap_item_seqlens):
cap_attn_mask[i, :seq_len] = 1
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer in self.context_refiner:
cap_feats = self._gradient_checkpointing_func(layer, cap_feats, cap_attn_mask, cap_freqs_cis)
else:
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_attn_mask, cap_freqs_cis)
# unified
unified = []
unified_freqs_cis = []
for i in range(bsz):
x_len = x_item_seqlens[i]
cap_len = cap_item_seqlens[i]
unified.append(torch.cat([x[i][:x_len], cap_feats[i][:cap_len]]))
unified_freqs_cis.append(torch.cat([x_freqs_cis[i][:x_len], cap_freqs_cis[i][:cap_len]]))
unified_item_seqlens = [a + b for a, b in zip(cap_item_seqlens, x_item_seqlens)]
assert unified_item_seqlens == [len(_) for _ in unified]
unified_max_item_seqlen = max(unified_item_seqlens)
unified = pad_sequence(unified, batch_first=True, padding_value=0.0)
unified_freqs_cis = pad_sequence(unified_freqs_cis, batch_first=True, padding_value=0.0)
unified_attn_mask = torch.zeros((bsz, unified_max_item_seqlen), dtype=torch.bool, device=device)
for i, seq_len in enumerate(unified_item_seqlens):
unified_attn_mask[i, :seq_len] = 1
## ControlNet start
controlnet_block_samples = None
if control_context is not None and conditioning_scale > 0.0:
control_context = self.patchify(control_context, patch_size, f_patch_size)
control_context = torch.cat(control_context, dim=0)
control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context)
control_context[torch.cat(x_inner_pad_mask)] = self.x_pad_token
control_context = list(control_context.split(x_item_seqlens, dim=0))
control_context = pad_sequence(control_context, batch_first=True, padding_value=0.0)
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer in self.control_noise_refiner:
control_context = self._gradient_checkpointing_func(
layer, control_context, x_attn_mask, x_freqs_cis, adaln_input
)
else:
for layer in self.control_noise_refiner:
control_context = layer(control_context, x_attn_mask, x_freqs_cis, adaln_input)
# unified
control_context_unified = []
for i in range(bsz):
x_len = x_item_seqlens[i]
cap_len = cap_item_seqlens[i]
control_context_unified.append(torch.cat([control_context[i][:x_len], cap_feats[i][:cap_len]]))
control_context_unified = pad_sequence(control_context_unified, batch_first=True, padding_value=0.0)
for layer in self.control_layers:
if torch.is_grad_enabled() and self.gradient_checkpointing:
control_context_unified = self._gradient_checkpointing_func(
layer, control_context_unified, unified, unified_attn_mask, unified_freqs_cis, adaln_input
)
else:
control_context_unified = layer(
control_context_unified, unified, unified_attn_mask, unified_freqs_cis, adaln_input
)
hints = torch.unbind(control_context_unified)[:-1]
controlnet_block_samples = {
layer_idx: hints[idx] * conditioning_scale for idx, layer_idx in enumerate(self.control_layers_places)
}
if torch.is_grad_enabled() and self.gradient_checkpointing:
for layer_idx, layer in enumerate(self.layers):
unified = self._gradient_checkpointing_func(
layer, unified, unified_attn_mask, unified_freqs_cis, adaln_input
)
if controlnet_block_samples is not None:
if layer_idx in controlnet_block_samples:
unified = unified + controlnet_block_samples[layer_idx]
else:
for layer_idx, layer in enumerate(self.layers):
unified = layer(unified, unified_attn_mask, unified_freqs_cis, adaln_input)
if controlnet_block_samples is not None:
if layer_idx in controlnet_block_samples:
unified = unified + controlnet_block_samples[layer_idx]
unified = self.all_final_layer[f"{patch_size}-{f_patch_size}"](unified, adaln_input)
x = list(unified.unbind(dim=0))
x = self.unpatchify(x, x_size, patch_size, f_patch_size)
if not return_dict:
return (x,)
return Transformer2DModelOutput(sample=x)