timxiaohangt commited on
Commit
d6ee15e
·
verified ·
1 Parent(s): a7aee79

Upload model checkpoint

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/media/cheliu/xiaohang/mdpo/checkpoints/LLaDA-8B-Instruct-MDPO-numina-adv-256st-8sample_temp0.4_8gpus",
3
+ "activation_type": "silu",
4
+ "alibi": false,
5
+ "alibi_bias_max": 8.0,
6
+ "architectures": [
7
+ "LLaDAModelLM"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "attention_layer_norm": false,
11
+ "attention_layer_norm_with_affine": true,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_llada.LLaDAConfig",
14
+ "AutoModel": "GSAI-ML/LLaDA-8B-Instruct--modeling_llada.LLaDAModelLM",
15
+ "AutoModelForCausalLM": "GSAI-ML/LLaDA-8B-Instruct--modeling_llada.LLaDAModelLM"
16
+ },
17
+ "bias_for_layer_norm": false,
18
+ "block_group_size": 1,
19
+ "block_type": "llama",
20
+ "d_model": 4096,
21
+ "embedding_dropout": 0.0,
22
+ "embedding_size": 126464,
23
+ "eos_token_id": 126081,
24
+ "flash_attention": false,
25
+ "include_bias": false,
26
+ "include_qkv_bias": false,
27
+ "init_cutoff_factor": null,
28
+ "init_device": "meta",
29
+ "init_fn": "mitchell",
30
+ "init_std": 0.02,
31
+ "input_emb_norm": false,
32
+ "layer_norm_type": "rms",
33
+ "layer_norm_with_affine": true,
34
+ "mask_token_id": 126336,
35
+ "max_sequence_length": 4096,
36
+ "mlp_hidden_size": 12288,
37
+ "mlp_ratio": 4,
38
+ "model_type": "llada",
39
+ "multi_query_attention": null,
40
+ "n_heads": 32,
41
+ "n_kv_heads": 32,
42
+ "n_layers": 32,
43
+ "pad_token_id": 126081,
44
+ "precision": "amp_bf16",
45
+ "residual_dropout": 0.0,
46
+ "rms_norm_eps": 1e-05,
47
+ "rope": true,
48
+ "rope_full_precision": true,
49
+ "rope_theta": 500000.0,
50
+ "scale_logits": false,
51
+ "torch_dtype": "float32",
52
+ "transformers_version": "4.49.0",
53
+ "use_cache": true,
54
+ "vocab_size": 126464,
55
+ "weight_tying": false
56
+ }
configuration_llada.py ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ LLaDA configuration
3
+ """
4
+ from transformers import AutoConfig, PretrainedConfig
5
+
6
+ from enum import Enum
7
+ from os import PathLike
8
+ from typing import Union
9
+ from dataclasses import asdict, dataclass, field
10
+ from glob import glob
11
+ from pathlib import Path
12
+ from typing import (
13
+ Any,
14
+ Dict,
15
+ Iterable,
16
+ List,
17
+ Optional,
18
+ Tuple,
19
+ Type,
20
+ TypeVar,
21
+ Union,
22
+ cast,
23
+ )
24
+
25
+
26
+ __all__ = [
27
+ "ActivationType",
28
+ "ActivationCheckpointingStrategy",
29
+ "BlockType",
30
+ "LayerNormType",
31
+ "InitFnType",
32
+ "ModelConfig",
33
+ ]
34
+
35
+ PathOrStr = Union[str, PathLike]
36
+
37
+
38
+ class StrEnum(str, Enum):
39
+ """
40
+ This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
41
+ We include this here for compatibility with older version of Python.
42
+ """
43
+
44
+ def __str__(self) -> str:
45
+ return self.value
46
+
47
+ def __repr__(self) -> str:
48
+ return f"'{str(self)}'"
49
+
50
+
51
+ class LayerNormType(StrEnum):
52
+ default = "default"
53
+ """
54
+ The default LayerNorm implementation, equivalent to PyTorch's built-in version.
55
+ """
56
+
57
+ low_precision = "low_precision"
58
+ """
59
+ A low-precision version of the default LayerNorm.
60
+ """
61
+
62
+ rms = "rms"
63
+ """
64
+ An RMSNorm implementation. When using ``torch.compile`` this is
65
+ probably the fastest implementation.
66
+ """
67
+
68
+ gemma_rms = "gemma_rms"
69
+ """
70
+ An RMSNorm implementation by gemmma. When using ``torch.compile`` this is
71
+ probably the fastest implementation.
72
+ """
73
+
74
+ amd_compatible = "amd_compatible"
75
+ """
76
+ LayerNorm implemented manually to work around an issue with ROCm.
77
+ """
78
+
79
+
80
+ class ActivationType(StrEnum):
81
+ gelu = "gelu"
82
+ relu = "relu"
83
+ silu = "silu"
84
+ swiglu = "swiglu"
85
+
86
+
87
+ class BlockType(StrEnum):
88
+ sequential = "sequential"
89
+ parallel = "parallel"
90
+
91
+ llama = "llama"
92
+ """
93
+ A block similar to the sequential block with slightly different
94
+ implementations of operations like attention to imitate the behavior of Llama.
95
+ """
96
+
97
+
98
+ class InitFnType(StrEnum):
99
+ mitchell = "mitchell"
100
+ """
101
+ The strategy suggested to us by Mitchell Wortsman from UW.
102
+ This uses a truncated normal distribution with an adaptive standard deviation that depends
103
+ on the size of the weights as well as the depth of the layer.
104
+ """
105
+
106
+ normal = "normal"
107
+ """
108
+ All weights are initialized from the same normal distribution.
109
+ """
110
+
111
+ kaiming_normal = "kaiming_normal"
112
+ """
113
+ All weights are initialized with the Kaiming method from a normal distribution.
114
+ Note this currently won't work with FSDP.
115
+ """
116
+
117
+ fan_in = "fan_in"
118
+ """
119
+ "Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
120
+ is the input dimensionality of the kernel.
121
+ """
122
+
123
+ full_megatron = "full_megatron"
124
+ """
125
+ This is what metaseq calls "full megatron init". It is the init used for Llama 2.
126
+ """
127
+
128
+
129
+ @dataclass
130
+ class ModelConfig():
131
+ """
132
+ LLaDA (model) configuration.
133
+ """
134
+
135
+ # Note that the defaults for these attributes are equivalent to the base GPT2 model.
136
+
137
+ d_model: int = 768
138
+ """
139
+ The hidden size of the model.
140
+ """
141
+
142
+ n_heads: int = 12
143
+ """
144
+ The number of self-attention heads.
145
+ """
146
+
147
+ n_kv_heads: Optional[int] = None
148
+ """
149
+ The number of heads to use for keys and values. Defaults to `n_heads`.
150
+ Set this to ``None`` or ``n_heads`` for normal multi-head attention.
151
+ Set this to 1 for multi-query attention.
152
+ Set it to some in-between value for Llama2-style grouped query attention.
153
+ """
154
+
155
+ n_layers: int = 12
156
+ """
157
+ The number of layers/blocks.
158
+ """
159
+
160
+ mlp_ratio: int = 4
161
+ """
162
+ The ratio of the inner MLP dimensionality to ``d_model``.
163
+ This is only used when ``mlp_hidden_size`` is not set.
164
+ """
165
+
166
+ mlp_hidden_size: Optional[int] = None
167
+ """
168
+ Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
169
+ """
170
+
171
+ activation_type: ActivationType = ActivationType.swiglu
172
+ """
173
+ The activation function to use within the MLP layers.
174
+ """
175
+
176
+ block_type: BlockType = BlockType.sequential
177
+ """
178
+ The transformer block implementation.
179
+ """
180
+
181
+ block_group_size: int = 1
182
+ """
183
+ The number of blocks to group together into a single parent block.
184
+ This has no affect on the number of parameters in the model and is only used to wrap groups
185
+ of blocks together with a single FSDP wrapper during training.
186
+ """
187
+
188
+ alibi: bool = False
189
+ """
190
+ If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
191
+ """
192
+
193
+ alibi_bias_max: float = 8.0
194
+ """
195
+ Maximum absolute value of ALiBi bias.
196
+ """
197
+
198
+ rope: bool = False
199
+ """
200
+ Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
201
+ """
202
+
203
+ rope_full_precision: bool = True
204
+ """
205
+ If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
206
+ apply RoPE at the precision of the input.
207
+ """
208
+
209
+ flash_attention: bool = False
210
+ """
211
+ If ``True``, use ``FlashAttention``.
212
+ """
213
+
214
+ attention_dropout: float = 0.1
215
+ """
216
+ The dropout probability within the attention modules.
217
+ """
218
+
219
+ multi_query_attention: Optional[bool] = None
220
+ """
221
+ Use the Multi-Query formulation of attention used in PaLM. This reduces the number of parameters
222
+ and is more efficient during inference.
223
+ """
224
+
225
+ attention_layer_norm: bool = False
226
+ """
227
+ Apply layer norm to the keys and queries within the attention mechanism.
228
+ This can help stabilize training.
229
+ """
230
+
231
+ residual_dropout: float = 0.1
232
+ """
233
+ The dropout probability for the MLP and attention output within each block.
234
+ """
235
+
236
+ embedding_dropout: float = 0.1
237
+ """
238
+ The dropout probability for embeddings.
239
+ """
240
+
241
+ input_emb_norm: bool = False
242
+ """
243
+ An input hidden_states norm implementation by gemmma.
244
+ """
245
+
246
+ layer_norm_type: LayerNormType = LayerNormType.default
247
+ """
248
+ The layernorm implementation to use.
249
+ """
250
+
251
+ layer_norm_with_affine: bool = True
252
+ """
253
+ Whether to include bias and weight parameters for the layer norms.
254
+ This only affects layer norms that are immediately followed by a linear layer in the forward pass,
255
+ so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
256
+ to ``False``.
257
+ """
258
+
259
+ rms_norm_eps: float = 1e-05
260
+ """
261
+ The rms layernorm eps param.
262
+ """
263
+
264
+ attention_layer_norm_with_affine: bool = True
265
+ """
266
+ Toggle affine transform for the QK norms.
267
+ """
268
+
269
+ max_sequence_length: int = 1024
270
+ """
271
+ The maximum input sequence length supported by the model.
272
+ """
273
+
274
+ rope_theta: float = 10000.0
275
+ """
276
+ The rope base param.
277
+ """
278
+
279
+ include_qkv_bias: Optional[bool] = False
280
+ """
281
+ Whether or not to include bias parameters in qkv linear layers.
282
+ """
283
+
284
+ include_bias: bool = False
285
+ """
286
+ Whether or not to include bias parameters in linear layers.
287
+ In PaLM, they got rid of all bias terms because they found that large
288
+ models tend to have near 0 bias terms anyway.
289
+ """
290
+
291
+ bias_for_layer_norm: Optional[bool] = None
292
+ """
293
+ Whether or not to include bias parameters in layer norm.
294
+ This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
295
+ layer norm.
296
+ When this is None (the default), it inherits the setting from include_bias.
297
+ """
298
+
299
+ scale_logits: bool = False
300
+ """
301
+ If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
302
+ """
303
+
304
+ vocab_size: int = 50257
305
+ """
306
+ Vocabulary size of the model.
307
+ """
308
+
309
+ embedding_size: Optional[int] = 50304
310
+ """
311
+ The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
312
+ to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
313
+ next multiple of 128 that's greater than ``vocab_size`` can improve throughput
314
+ substantially.
315
+ """
316
+
317
+ weight_tying: bool = True
318
+ """
319
+ Whether to tie output linear weights to the input embedding.
320
+ """
321
+
322
+ eos_token_id: int = 50256
323
+ """
324
+ The ID of the end-of-sentence special token.
325
+ """
326
+
327
+ pad_token_id: int = 50256
328
+ """
329
+ The ID of the token to use for padding. Defaults to the ID of the EOS token.
330
+ """
331
+
332
+ mask_token_id: Optional[int] = 50256
333
+ """
334
+ The ID of the token to use for mask token. Defaults to the ID of the EOS token.
335
+ """
336
+
337
+ init_device: Optional[str] = None
338
+ """
339
+ The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
340
+ """
341
+
342
+ init_fn: InitFnType = InitFnType.normal
343
+ """
344
+ The weight initialization strategy.
345
+ """
346
+
347
+ init_std: float = 0.02
348
+ """
349
+ The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
350
+ as "normal".
351
+ """
352
+
353
+ init_cutoff_factor: Optional[float] = None
354
+ """
355
+ A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
356
+ as "normal". Setting this to None means values are not cutoff.
357
+ """
358
+
359
+ precision: Optional[str] = None
360
+ """
361
+ Precision used to train/evaluate with. You shouldn't set this directly.
362
+ See :data:`TrainConfig.precision` instead.
363
+ """
364
+
365
+ @property
366
+ def effective_n_kv_heads(self) -> int:
367
+ if self.n_kv_heads is None:
368
+ if self.multi_query_attention is True:
369
+ return 1
370
+ else:
371
+ return self.n_heads
372
+ else:
373
+ if self.multi_query_attention is None:
374
+ return self.n_kv_heads
375
+ if self.multi_query_attention:
376
+ n_kv_heads_should_be = 1
377
+ else:
378
+ n_kv_heads_should_be = self.n_heads
379
+ if self.n_kv_heads == n_kv_heads_should_be:
380
+ return n_kv_heads_should_be
381
+ else:
382
+ raise Exception(
383
+ "You can't set `multi_query_attention` and `n_kv_heads` at the same time."
384
+ )
385
+
386
+ class ActivationCheckpointingStrategy(StrEnum):
387
+ whole_layer = "whole_layer"
388
+ """
389
+ Checkpoint every transformer layer.
390
+ """
391
+
392
+ one_in_two = "one_in_two"
393
+ """
394
+ Checkpoint one in two transformer layers.
395
+ """
396
+
397
+ one_in_three = "one_in_three"
398
+ """
399
+ Checkpoint one in three transformer layers.
400
+ """
401
+
402
+ one_in_four = "one_in_four"
403
+ """
404
+ Checkpoint one in four transformer layers.
405
+ """
406
+
407
+ two_in_three = "two_in_three"
408
+ """
409
+ Checkpoint two out of every three transformer layers.
410
+ """
411
+
412
+ three_in_four = "three_in_four"
413
+ """
414
+ Checkpoint three out of four of every transformer layers.
415
+ """
416
+
417
+ four_in_five = "four_in_five"
418
+ """
419
+ Checkpoint four out of five of every transformer layers.
420
+ """
421
+
422
+ nine_in_ten = "nine_in_ten"
423
+ """
424
+ Checkpoint nine out of ten of every transformer layers.
425
+ """
426
+
427
+ fine_grained = "fine_grained"
428
+ """
429
+ Focus checkpointing on where it is cheap to recompute and saves most memory.
430
+ """
431
+
432
+
433
+ class LLaDAConfig(PretrainedConfig):
434
+ model_type = "llada"
435
+ keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
436
+
437
+ def __init__(self, use_cache: bool = False, **kwargs):
438
+ model_config = ModelConfig()
439
+ all_kwargs = model_config.__dict__
440
+ all_kwargs.update(kwargs)
441
+ all_kwargs.update({"use_cache": use_cache})
442
+ all_kwargs.update(
443
+ {
444
+ "architectures": all_kwargs.get("architectures", ["LLaDAModelLM"])
445
+ }
446
+ )
447
+ super().__init__(**all_kwargs)
448
+
449
+ @property
450
+ def num_attention_heads(self):
451
+ return self.n_heads
452
+
453
+ @property
454
+ def num_hidden_layers(self):
455
+ return self.n_layers
456
+
457
+ @property
458
+ def hidden_size(self):
459
+ return self.d_model
460
+
461
+
462
+ # Register the config class so that it is available for transformer pipelines, auto-loading etc.
463
+ AutoConfig.register("llada", LLaDAConfig)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 126080,
4
+ "eos_token_id": 126081,
5
+ "transformers_version": "4.49.0"
6
+ }
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ba57d9e97151bf3d3f2e7c8aae4484a6b62c1bf7c123014a665b9adb681546e
3
+ size 4957818648
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b562142d6c8181b621b9e9ecf531b9f50010b20a685900a313d710d7af2fdb0
3
+ size 4966225704
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f274c80f9b4f03e741a885c6e428c699e8c586ea0e20d373faec49c04e1297
3
+ size 4832040992
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8f5a83bcf4ed934892b8013edf267169b4ed91b513d6fc5bde7562871ec7f1c
3
+ size 4832007792
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b118ea76d89845520f7eda51e6ec30e4da9863ec5edbc8c560e42a0708ef477
3
+ size 4966258728
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43be668a8ccc838990c4357fad3a486a00ea2bebb10bf0c22a11ba2436b47bb8
3
+ size 4966258752
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:608589c5a0461e0f3b33fd28be4c21ce978d380a29353f9aefdc35fe3657b916
3
+ size 2541748728
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 32062324736
4
+ },
5
+ "weight_map": {
6
+ "model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00007.safetensors",
7
+ "model.transformer.blocks.0.attn_out.weight": "model-00001-of-00007.safetensors",
8
+ "model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00007.safetensors",
9
+ "model.transformer.blocks.0.ff_out.weight": "model-00001-of-00007.safetensors",
10
+ "model.transformer.blocks.0.ff_proj.weight": "model-00001-of-00007.safetensors",
11
+ "model.transformer.blocks.0.k_proj.weight": "model-00001-of-00007.safetensors",
12
+ "model.transformer.blocks.0.q_proj.weight": "model-00001-of-00007.safetensors",
13
+ "model.transformer.blocks.0.up_proj.weight": "model-00001-of-00007.safetensors",
14
+ "model.transformer.blocks.0.v_proj.weight": "model-00001-of-00007.safetensors",
15
+ "model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00007.safetensors",
16
+ "model.transformer.blocks.1.attn_out.weight": "model-00001-of-00007.safetensors",
17
+ "model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00007.safetensors",
18
+ "model.transformer.blocks.1.ff_out.weight": "model-00001-of-00007.safetensors",
19
+ "model.transformer.blocks.1.ff_proj.weight": "model-00001-of-00007.safetensors",
20
+ "model.transformer.blocks.1.k_proj.weight": "model-00001-of-00007.safetensors",
21
+ "model.transformer.blocks.1.q_proj.weight": "model-00001-of-00007.safetensors",
22
+ "model.transformer.blocks.1.up_proj.weight": "model-00001-of-00007.safetensors",
23
+ "model.transformer.blocks.1.v_proj.weight": "model-00001-of-00007.safetensors",
24
+ "model.transformer.blocks.10.attn_norm.weight": "model-00003-of-00007.safetensors",
25
+ "model.transformer.blocks.10.attn_out.weight": "model-00003-of-00007.safetensors",
26
+ "model.transformer.blocks.10.ff_norm.weight": "model-00003-of-00007.safetensors",
27
+ "model.transformer.blocks.10.ff_out.weight": "model-00003-of-00007.safetensors",
28
+ "model.transformer.blocks.10.ff_proj.weight": "model-00003-of-00007.safetensors",
29
+ "model.transformer.blocks.10.k_proj.weight": "model-00003-of-00007.safetensors",
30
+ "model.transformer.blocks.10.q_proj.weight": "model-00003-of-00007.safetensors",
31
+ "model.transformer.blocks.10.up_proj.weight": "model-00003-of-00007.safetensors",
32
+ "model.transformer.blocks.10.v_proj.weight": "model-00003-of-00007.safetensors",
33
+ "model.transformer.blocks.11.attn_norm.weight": "model-00003-of-00007.safetensors",
34
+ "model.transformer.blocks.11.attn_out.weight": "model-00003-of-00007.safetensors",
35
+ "model.transformer.blocks.11.ff_norm.weight": "model-00003-of-00007.safetensors",
36
+ "model.transformer.blocks.11.ff_out.weight": "model-00003-of-00007.safetensors",
37
+ "model.transformer.blocks.11.ff_proj.weight": "model-00003-of-00007.safetensors",
38
+ "model.transformer.blocks.11.k_proj.weight": "model-00003-of-00007.safetensors",
39
+ "model.transformer.blocks.11.q_proj.weight": "model-00003-of-00007.safetensors",
40
+ "model.transformer.blocks.11.up_proj.weight": "model-00003-of-00007.safetensors",
41
+ "model.transformer.blocks.11.v_proj.weight": "model-00003-of-00007.safetensors",
42
+ "model.transformer.blocks.12.attn_norm.weight": "model-00003-of-00007.safetensors",
43
+ "model.transformer.blocks.12.attn_out.weight": "model-00003-of-00007.safetensors",
44
+ "model.transformer.blocks.12.ff_norm.weight": "model-00003-of-00007.safetensors",
45
+ "model.transformer.blocks.12.ff_out.weight": "model-00003-of-00007.safetensors",
46
+ "model.transformer.blocks.12.ff_proj.weight": "model-00003-of-00007.safetensors",
47
+ "model.transformer.blocks.12.k_proj.weight": "model-00003-of-00007.safetensors",
48
+ "model.transformer.blocks.12.q_proj.weight": "model-00003-of-00007.safetensors",
49
+ "model.transformer.blocks.12.up_proj.weight": "model-00003-of-00007.safetensors",
50
+ "model.transformer.blocks.12.v_proj.weight": "model-00003-of-00007.safetensors",
51
+ "model.transformer.blocks.13.attn_norm.weight": "model-00003-of-00007.safetensors",
52
+ "model.transformer.blocks.13.attn_out.weight": "model-00003-of-00007.safetensors",
53
+ "model.transformer.blocks.13.ff_norm.weight": "model-00003-of-00007.safetensors",
54
+ "model.transformer.blocks.13.ff_out.weight": "model-00003-of-00007.safetensors",
55
+ "model.transformer.blocks.13.ff_proj.weight": "model-00003-of-00007.safetensors",
56
+ "model.transformer.blocks.13.k_proj.weight": "model-00003-of-00007.safetensors",
57
+ "model.transformer.blocks.13.q_proj.weight": "model-00003-of-00007.safetensors",
58
+ "model.transformer.blocks.13.up_proj.weight": "model-00003-of-00007.safetensors",
59
+ "model.transformer.blocks.13.v_proj.weight": "model-00003-of-00007.safetensors",
60
+ "model.transformer.blocks.14.attn_norm.weight": "model-00003-of-00007.safetensors",
61
+ "model.transformer.blocks.14.attn_out.weight": "model-00003-of-00007.safetensors",
62
+ "model.transformer.blocks.14.ff_norm.weight": "model-00003-of-00007.safetensors",
63
+ "model.transformer.blocks.14.ff_out.weight": "model-00003-of-00007.safetensors",
64
+ "model.transformer.blocks.14.ff_proj.weight": "model-00004-of-00007.safetensors",
65
+ "model.transformer.blocks.14.k_proj.weight": "model-00003-of-00007.safetensors",
66
+ "model.transformer.blocks.14.q_proj.weight": "model-00003-of-00007.safetensors",
67
+ "model.transformer.blocks.14.up_proj.weight": "model-00004-of-00007.safetensors",
68
+ "model.transformer.blocks.14.v_proj.weight": "model-00003-of-00007.safetensors",
69
+ "model.transformer.blocks.15.attn_norm.weight": "model-00004-of-00007.safetensors",
70
+ "model.transformer.blocks.15.attn_out.weight": "model-00004-of-00007.safetensors",
71
+ "model.transformer.blocks.15.ff_norm.weight": "model-00004-of-00007.safetensors",
72
+ "model.transformer.blocks.15.ff_out.weight": "model-00004-of-00007.safetensors",
73
+ "model.transformer.blocks.15.ff_proj.weight": "model-00004-of-00007.safetensors",
74
+ "model.transformer.blocks.15.k_proj.weight": "model-00004-of-00007.safetensors",
75
+ "model.transformer.blocks.15.q_proj.weight": "model-00004-of-00007.safetensors",
76
+ "model.transformer.blocks.15.up_proj.weight": "model-00004-of-00007.safetensors",
77
+ "model.transformer.blocks.15.v_proj.weight": "model-00004-of-00007.safetensors",
78
+ "model.transformer.blocks.16.attn_norm.weight": "model-00004-of-00007.safetensors",
79
+ "model.transformer.blocks.16.attn_out.weight": "model-00004-of-00007.safetensors",
80
+ "model.transformer.blocks.16.ff_norm.weight": "model-00004-of-00007.safetensors",
81
+ "model.transformer.blocks.16.ff_out.weight": "model-00004-of-00007.safetensors",
82
+ "model.transformer.blocks.16.ff_proj.weight": "model-00004-of-00007.safetensors",
83
+ "model.transformer.blocks.16.k_proj.weight": "model-00004-of-00007.safetensors",
84
+ "model.transformer.blocks.16.q_proj.weight": "model-00004-of-00007.safetensors",
85
+ "model.transformer.blocks.16.up_proj.weight": "model-00004-of-00007.safetensors",
86
+ "model.transformer.blocks.16.v_proj.weight": "model-00004-of-00007.safetensors",
87
+ "model.transformer.blocks.17.attn_norm.weight": "model-00004-of-00007.safetensors",
88
+ "model.transformer.blocks.17.attn_out.weight": "model-00004-of-00007.safetensors",
89
+ "model.transformer.blocks.17.ff_norm.weight": "model-00004-of-00007.safetensors",
90
+ "model.transformer.blocks.17.ff_out.weight": "model-00004-of-00007.safetensors",
91
+ "model.transformer.blocks.17.ff_proj.weight": "model-00004-of-00007.safetensors",
92
+ "model.transformer.blocks.17.k_proj.weight": "model-00004-of-00007.safetensors",
93
+ "model.transformer.blocks.17.q_proj.weight": "model-00004-of-00007.safetensors",
94
+ "model.transformer.blocks.17.up_proj.weight": "model-00004-of-00007.safetensors",
95
+ "model.transformer.blocks.17.v_proj.weight": "model-00004-of-00007.safetensors",
96
+ "model.transformer.blocks.18.attn_norm.weight": "model-00004-of-00007.safetensors",
97
+ "model.transformer.blocks.18.attn_out.weight": "model-00004-of-00007.safetensors",
98
+ "model.transformer.blocks.18.ff_norm.weight": "model-00004-of-00007.safetensors",
99
+ "model.transformer.blocks.18.ff_out.weight": "model-00004-of-00007.safetensors",
100
+ "model.transformer.blocks.18.ff_proj.weight": "model-00004-of-00007.safetensors",
101
+ "model.transformer.blocks.18.k_proj.weight": "model-00004-of-00007.safetensors",
102
+ "model.transformer.blocks.18.q_proj.weight": "model-00004-of-00007.safetensors",
103
+ "model.transformer.blocks.18.up_proj.weight": "model-00004-of-00007.safetensors",
104
+ "model.transformer.blocks.18.v_proj.weight": "model-00004-of-00007.safetensors",
105
+ "model.transformer.blocks.19.attn_norm.weight": "model-00004-of-00007.safetensors",
106
+ "model.transformer.blocks.19.attn_out.weight": "model-00004-of-00007.safetensors",
107
+ "model.transformer.blocks.19.ff_norm.weight": "model-00004-of-00007.safetensors",
108
+ "model.transformer.blocks.19.ff_out.weight": "model-00004-of-00007.safetensors",
109
+ "model.transformer.blocks.19.ff_proj.weight": "model-00004-of-00007.safetensors",
110
+ "model.transformer.blocks.19.k_proj.weight": "model-00004-of-00007.safetensors",
111
+ "model.transformer.blocks.19.q_proj.weight": "model-00004-of-00007.safetensors",
112
+ "model.transformer.blocks.19.up_proj.weight": "model-00004-of-00007.safetensors",
113
+ "model.transformer.blocks.19.v_proj.weight": "model-00004-of-00007.safetensors",
114
+ "model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00007.safetensors",
115
+ "model.transformer.blocks.2.attn_out.weight": "model-00001-of-00007.safetensors",
116
+ "model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00007.safetensors",
117
+ "model.transformer.blocks.2.ff_out.weight": "model-00001-of-00007.safetensors",
118
+ "model.transformer.blocks.2.ff_proj.weight": "model-00001-of-00007.safetensors",
119
+ "model.transformer.blocks.2.k_proj.weight": "model-00001-of-00007.safetensors",
120
+ "model.transformer.blocks.2.q_proj.weight": "model-00001-of-00007.safetensors",
121
+ "model.transformer.blocks.2.up_proj.weight": "model-00001-of-00007.safetensors",
122
+ "model.transformer.blocks.2.v_proj.weight": "model-00001-of-00007.safetensors",
123
+ "model.transformer.blocks.20.attn_norm.weight": "model-00005-of-00007.safetensors",
124
+ "model.transformer.blocks.20.attn_out.weight": "model-00004-of-00007.safetensors",
125
+ "model.transformer.blocks.20.ff_norm.weight": "model-00005-of-00007.safetensors",
126
+ "model.transformer.blocks.20.ff_out.weight": "model-00005-of-00007.safetensors",
127
+ "model.transformer.blocks.20.ff_proj.weight": "model-00005-of-00007.safetensors",
128
+ "model.transformer.blocks.20.k_proj.weight": "model-00005-of-00007.safetensors",
129
+ "model.transformer.blocks.20.q_proj.weight": "model-00005-of-00007.safetensors",
130
+ "model.transformer.blocks.20.up_proj.weight": "model-00005-of-00007.safetensors",
131
+ "model.transformer.blocks.20.v_proj.weight": "model-00005-of-00007.safetensors",
132
+ "model.transformer.blocks.21.attn_norm.weight": "model-00005-of-00007.safetensors",
133
+ "model.transformer.blocks.21.attn_out.weight": "model-00005-of-00007.safetensors",
134
+ "model.transformer.blocks.21.ff_norm.weight": "model-00005-of-00007.safetensors",
135
+ "model.transformer.blocks.21.ff_out.weight": "model-00005-of-00007.safetensors",
136
+ "model.transformer.blocks.21.ff_proj.weight": "model-00005-of-00007.safetensors",
137
+ "model.transformer.blocks.21.k_proj.weight": "model-00005-of-00007.safetensors",
138
+ "model.transformer.blocks.21.q_proj.weight": "model-00005-of-00007.safetensors",
139
+ "model.transformer.blocks.21.up_proj.weight": "model-00005-of-00007.safetensors",
140
+ "model.transformer.blocks.21.v_proj.weight": "model-00005-of-00007.safetensors",
141
+ "model.transformer.blocks.22.attn_norm.weight": "model-00005-of-00007.safetensors",
142
+ "model.transformer.blocks.22.attn_out.weight": "model-00005-of-00007.safetensors",
143
+ "model.transformer.blocks.22.ff_norm.weight": "model-00005-of-00007.safetensors",
144
+ "model.transformer.blocks.22.ff_out.weight": "model-00005-of-00007.safetensors",
145
+ "model.transformer.blocks.22.ff_proj.weight": "model-00005-of-00007.safetensors",
146
+ "model.transformer.blocks.22.k_proj.weight": "model-00005-of-00007.safetensors",
147
+ "model.transformer.blocks.22.q_proj.weight": "model-00005-of-00007.safetensors",
148
+ "model.transformer.blocks.22.up_proj.weight": "model-00005-of-00007.safetensors",
149
+ "model.transformer.blocks.22.v_proj.weight": "model-00005-of-00007.safetensors",
150
+ "model.transformer.blocks.23.attn_norm.weight": "model-00005-of-00007.safetensors",
151
+ "model.transformer.blocks.23.attn_out.weight": "model-00005-of-00007.safetensors",
152
+ "model.transformer.blocks.23.ff_norm.weight": "model-00005-of-00007.safetensors",
153
+ "model.transformer.blocks.23.ff_out.weight": "model-00005-of-00007.safetensors",
154
+ "model.transformer.blocks.23.ff_proj.weight": "model-00005-of-00007.safetensors",
155
+ "model.transformer.blocks.23.k_proj.weight": "model-00005-of-00007.safetensors",
156
+ "model.transformer.blocks.23.q_proj.weight": "model-00005-of-00007.safetensors",
157
+ "model.transformer.blocks.23.up_proj.weight": "model-00005-of-00007.safetensors",
158
+ "model.transformer.blocks.23.v_proj.weight": "model-00005-of-00007.safetensors",
159
+ "model.transformer.blocks.24.attn_norm.weight": "model-00005-of-00007.safetensors",
160
+ "model.transformer.blocks.24.attn_out.weight": "model-00005-of-00007.safetensors",
161
+ "model.transformer.blocks.24.ff_norm.weight": "model-00005-of-00007.safetensors",
162
+ "model.transformer.blocks.24.ff_out.weight": "model-00005-of-00007.safetensors",
163
+ "model.transformer.blocks.24.ff_proj.weight": "model-00005-of-00007.safetensors",
164
+ "model.transformer.blocks.24.k_proj.weight": "model-00005-of-00007.safetensors",
165
+ "model.transformer.blocks.24.q_proj.weight": "model-00005-of-00007.safetensors",
166
+ "model.transformer.blocks.24.up_proj.weight": "model-00005-of-00007.safetensors",
167
+ "model.transformer.blocks.24.v_proj.weight": "model-00005-of-00007.safetensors",
168
+ "model.transformer.blocks.25.attn_norm.weight": "model-00005-of-00007.safetensors",
169
+ "model.transformer.blocks.25.attn_out.weight": "model-00005-of-00007.safetensors",
170
+ "model.transformer.blocks.25.ff_norm.weight": "model-00005-of-00007.safetensors",
171
+ "model.transformer.blocks.25.ff_out.weight": "model-00005-of-00007.safetensors",
172
+ "model.transformer.blocks.25.ff_proj.weight": "model-00005-of-00007.safetensors",
173
+ "model.transformer.blocks.25.k_proj.weight": "model-00005-of-00007.safetensors",
174
+ "model.transformer.blocks.25.q_proj.weight": "model-00005-of-00007.safetensors",
175
+ "model.transformer.blocks.25.up_proj.weight": "model-00006-of-00007.safetensors",
176
+ "model.transformer.blocks.25.v_proj.weight": "model-00005-of-00007.safetensors",
177
+ "model.transformer.blocks.26.attn_norm.weight": "model-00006-of-00007.safetensors",
178
+ "model.transformer.blocks.26.attn_out.weight": "model-00006-of-00007.safetensors",
179
+ "model.transformer.blocks.26.ff_norm.weight": "model-00006-of-00007.safetensors",
180
+ "model.transformer.blocks.26.ff_out.weight": "model-00006-of-00007.safetensors",
181
+ "model.transformer.blocks.26.ff_proj.weight": "model-00006-of-00007.safetensors",
182
+ "model.transformer.blocks.26.k_proj.weight": "model-00006-of-00007.safetensors",
183
+ "model.transformer.blocks.26.q_proj.weight": "model-00006-of-00007.safetensors",
184
+ "model.transformer.blocks.26.up_proj.weight": "model-00006-of-00007.safetensors",
185
+ "model.transformer.blocks.26.v_proj.weight": "model-00006-of-00007.safetensors",
186
+ "model.transformer.blocks.27.attn_norm.weight": "model-00006-of-00007.safetensors",
187
+ "model.transformer.blocks.27.attn_out.weight": "model-00006-of-00007.safetensors",
188
+ "model.transformer.blocks.27.ff_norm.weight": "model-00006-of-00007.safetensors",
189
+ "model.transformer.blocks.27.ff_out.weight": "model-00006-of-00007.safetensors",
190
+ "model.transformer.blocks.27.ff_proj.weight": "model-00006-of-00007.safetensors",
191
+ "model.transformer.blocks.27.k_proj.weight": "model-00006-of-00007.safetensors",
192
+ "model.transformer.blocks.27.q_proj.weight": "model-00006-of-00007.safetensors",
193
+ "model.transformer.blocks.27.up_proj.weight": "model-00006-of-00007.safetensors",
194
+ "model.transformer.blocks.27.v_proj.weight": "model-00006-of-00007.safetensors",
195
+ "model.transformer.blocks.28.attn_norm.weight": "model-00006-of-00007.safetensors",
196
+ "model.transformer.blocks.28.attn_out.weight": "model-00006-of-00007.safetensors",
197
+ "model.transformer.blocks.28.ff_norm.weight": "model-00006-of-00007.safetensors",
198
+ "model.transformer.blocks.28.ff_out.weight": "model-00006-of-00007.safetensors",
199
+ "model.transformer.blocks.28.ff_proj.weight": "model-00006-of-00007.safetensors",
200
+ "model.transformer.blocks.28.k_proj.weight": "model-00006-of-00007.safetensors",
201
+ "model.transformer.blocks.28.q_proj.weight": "model-00006-of-00007.safetensors",
202
+ "model.transformer.blocks.28.up_proj.weight": "model-00006-of-00007.safetensors",
203
+ "model.transformer.blocks.28.v_proj.weight": "model-00006-of-00007.safetensors",
204
+ "model.transformer.blocks.29.attn_norm.weight": "model-00006-of-00007.safetensors",
205
+ "model.transformer.blocks.29.attn_out.weight": "model-00006-of-00007.safetensors",
206
+ "model.transformer.blocks.29.ff_norm.weight": "model-00006-of-00007.safetensors",
207
+ "model.transformer.blocks.29.ff_out.weight": "model-00006-of-00007.safetensors",
208
+ "model.transformer.blocks.29.ff_proj.weight": "model-00006-of-00007.safetensors",
209
+ "model.transformer.blocks.29.k_proj.weight": "model-00006-of-00007.safetensors",
210
+ "model.transformer.blocks.29.q_proj.weight": "model-00006-of-00007.safetensors",
211
+ "model.transformer.blocks.29.up_proj.weight": "model-00006-of-00007.safetensors",
212
+ "model.transformer.blocks.29.v_proj.weight": "model-00006-of-00007.safetensors",
213
+ "model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00007.safetensors",
214
+ "model.transformer.blocks.3.attn_out.weight": "model-00001-of-00007.safetensors",
215
+ "model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00007.safetensors",
216
+ "model.transformer.blocks.3.ff_out.weight": "model-00001-of-00007.safetensors",
217
+ "model.transformer.blocks.3.ff_proj.weight": "model-00002-of-00007.safetensors",
218
+ "model.transformer.blocks.3.k_proj.weight": "model-00002-of-00007.safetensors",
219
+ "model.transformer.blocks.3.q_proj.weight": "model-00002-of-00007.safetensors",
220
+ "model.transformer.blocks.3.up_proj.weight": "model-00002-of-00007.safetensors",
221
+ "model.transformer.blocks.3.v_proj.weight": "model-00002-of-00007.safetensors",
222
+ "model.transformer.blocks.30.attn_norm.weight": "model-00006-of-00007.safetensors",
223
+ "model.transformer.blocks.30.attn_out.weight": "model-00006-of-00007.safetensors",
224
+ "model.transformer.blocks.30.ff_norm.weight": "model-00006-of-00007.safetensors",
225
+ "model.transformer.blocks.30.ff_out.weight": "model-00006-of-00007.safetensors",
226
+ "model.transformer.blocks.30.ff_proj.weight": "model-00006-of-00007.safetensors",
227
+ "model.transformer.blocks.30.k_proj.weight": "model-00006-of-00007.safetensors",
228
+ "model.transformer.blocks.30.q_proj.weight": "model-00006-of-00007.safetensors",
229
+ "model.transformer.blocks.30.up_proj.weight": "model-00006-of-00007.safetensors",
230
+ "model.transformer.blocks.30.v_proj.weight": "model-00006-of-00007.safetensors",
231
+ "model.transformer.blocks.31.attn_norm.weight": "model-00006-of-00007.safetensors",
232
+ "model.transformer.blocks.31.attn_out.weight": "model-00006-of-00007.safetensors",
233
+ "model.transformer.blocks.31.ff_norm.weight": "model-00006-of-00007.safetensors",
234
+ "model.transformer.blocks.31.ff_out.weight": "model-00006-of-00007.safetensors",
235
+ "model.transformer.blocks.31.ff_proj.weight": "model-00007-of-00007.safetensors",
236
+ "model.transformer.blocks.31.k_proj.weight": "model-00006-of-00007.safetensors",
237
+ "model.transformer.blocks.31.q_proj.weight": "model-00006-of-00007.safetensors",
238
+ "model.transformer.blocks.31.up_proj.weight": "model-00007-of-00007.safetensors",
239
+ "model.transformer.blocks.31.v_proj.weight": "model-00007-of-00007.safetensors",
240
+ "model.transformer.blocks.4.attn_norm.weight": "model-00002-of-00007.safetensors",
241
+ "model.transformer.blocks.4.attn_out.weight": "model-00002-of-00007.safetensors",
242
+ "model.transformer.blocks.4.ff_norm.weight": "model-00002-of-00007.safetensors",
243
+ "model.transformer.blocks.4.ff_out.weight": "model-00002-of-00007.safetensors",
244
+ "model.transformer.blocks.4.ff_proj.weight": "model-00002-of-00007.safetensors",
245
+ "model.transformer.blocks.4.k_proj.weight": "model-00002-of-00007.safetensors",
246
+ "model.transformer.blocks.4.q_proj.weight": "model-00002-of-00007.safetensors",
247
+ "model.transformer.blocks.4.up_proj.weight": "model-00002-of-00007.safetensors",
248
+ "model.transformer.blocks.4.v_proj.weight": "model-00002-of-00007.safetensors",
249
+ "model.transformer.blocks.5.attn_norm.weight": "model-00002-of-00007.safetensors",
250
+ "model.transformer.blocks.5.attn_out.weight": "model-00002-of-00007.safetensors",
251
+ "model.transformer.blocks.5.ff_norm.weight": "model-00002-of-00007.safetensors",
252
+ "model.transformer.blocks.5.ff_out.weight": "model-00002-of-00007.safetensors",
253
+ "model.transformer.blocks.5.ff_proj.weight": "model-00002-of-00007.safetensors",
254
+ "model.transformer.blocks.5.k_proj.weight": "model-00002-of-00007.safetensors",
255
+ "model.transformer.blocks.5.q_proj.weight": "model-00002-of-00007.safetensors",
256
+ "model.transformer.blocks.5.up_proj.weight": "model-00002-of-00007.safetensors",
257
+ "model.transformer.blocks.5.v_proj.weight": "model-00002-of-00007.safetensors",
258
+ "model.transformer.blocks.6.attn_norm.weight": "model-00002-of-00007.safetensors",
259
+ "model.transformer.blocks.6.attn_out.weight": "model-00002-of-00007.safetensors",
260
+ "model.transformer.blocks.6.ff_norm.weight": "model-00002-of-00007.safetensors",
261
+ "model.transformer.blocks.6.ff_out.weight": "model-00002-of-00007.safetensors",
262
+ "model.transformer.blocks.6.ff_proj.weight": "model-00002-of-00007.safetensors",
263
+ "model.transformer.blocks.6.k_proj.weight": "model-00002-of-00007.safetensors",
264
+ "model.transformer.blocks.6.q_proj.weight": "model-00002-of-00007.safetensors",
265
+ "model.transformer.blocks.6.up_proj.weight": "model-00002-of-00007.safetensors",
266
+ "model.transformer.blocks.6.v_proj.weight": "model-00002-of-00007.safetensors",
267
+ "model.transformer.blocks.7.attn_norm.weight": "model-00002-of-00007.safetensors",
268
+ "model.transformer.blocks.7.attn_out.weight": "model-00002-of-00007.safetensors",
269
+ "model.transformer.blocks.7.ff_norm.weight": "model-00002-of-00007.safetensors",
270
+ "model.transformer.blocks.7.ff_out.weight": "model-00002-of-00007.safetensors",
271
+ "model.transformer.blocks.7.ff_proj.weight": "model-00002-of-00007.safetensors",
272
+ "model.transformer.blocks.7.k_proj.weight": "model-00002-of-00007.safetensors",
273
+ "model.transformer.blocks.7.q_proj.weight": "model-00002-of-00007.safetensors",
274
+ "model.transformer.blocks.7.up_proj.weight": "model-00002-of-00007.safetensors",
275
+ "model.transformer.blocks.7.v_proj.weight": "model-00002-of-00007.safetensors",
276
+ "model.transformer.blocks.8.attn_norm.weight": "model-00002-of-00007.safetensors",
277
+ "model.transformer.blocks.8.attn_out.weight": "model-00002-of-00007.safetensors",
278
+ "model.transformer.blocks.8.ff_norm.weight": "model-00002-of-00007.safetensors",
279
+ "model.transformer.blocks.8.ff_out.weight": "model-00002-of-00007.safetensors",
280
+ "model.transformer.blocks.8.ff_proj.weight": "model-00002-of-00007.safetensors",
281
+ "model.transformer.blocks.8.k_proj.weight": "model-00002-of-00007.safetensors",
282
+ "model.transformer.blocks.8.q_proj.weight": "model-00002-of-00007.safetensors",
283
+ "model.transformer.blocks.8.up_proj.weight": "model-00002-of-00007.safetensors",
284
+ "model.transformer.blocks.8.v_proj.weight": "model-00002-of-00007.safetensors",
285
+ "model.transformer.blocks.9.attn_norm.weight": "model-00003-of-00007.safetensors",
286
+ "model.transformer.blocks.9.attn_out.weight": "model-00003-of-00007.safetensors",
287
+ "model.transformer.blocks.9.ff_norm.weight": "model-00003-of-00007.safetensors",
288
+ "model.transformer.blocks.9.ff_out.weight": "model-00003-of-00007.safetensors",
289
+ "model.transformer.blocks.9.ff_proj.weight": "model-00003-of-00007.safetensors",
290
+ "model.transformer.blocks.9.k_proj.weight": "model-00003-of-00007.safetensors",
291
+ "model.transformer.blocks.9.q_proj.weight": "model-00003-of-00007.safetensors",
292
+ "model.transformer.blocks.9.up_proj.weight": "model-00003-of-00007.safetensors",
293
+ "model.transformer.blocks.9.v_proj.weight": "model-00003-of-00007.safetensors",
294
+ "model.transformer.ff_out.weight": "model-00007-of-00007.safetensors",
295
+ "model.transformer.ln_f.weight": "model-00001-of-00007.safetensors",
296
+ "model.transformer.wte.weight": "model-00001-of-00007.safetensors"
297
+ }
298
+ }