ocr / deepseek-ocr-vllm-test.py
davanstrien's picture
davanstrien HF Staff
Fix vLLM nightly wheel index URL
d2ade5c
raw
history blame
6.77 kB
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "vllm",
# "pillow",
# "datasets",
# "torch",
# "huggingface-hub",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# ///
"""
Minimal test script for DeepSeek-OCR with vLLM.
This is an MVP script to validate that DeepSeek-OCR works with vLLM.
Installs vLLM from nightly wheels (PR #27247 now merged to main).
Use this to test in Colab before building the full production script.
Usage:
# Test with a HF dataset image
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --index 0
# Test with local image
uv run deepseek-ocr-vllm-test.py --image path/to/image.png
# Test with different resolution mode
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --resolution-mode tiny
"""
import argparse
import base64
import io
import logging
import sys
from typing import List, Dict
import torch
from PIL import Image
from datasets import load_dataset
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Resolution mode presets from DeepSeek-OCR
RESOLUTION_MODES = {
"tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
def check_cuda():
"""Check CUDA availability."""
if not torch.cuda.is_available():
logger.error("❌ CUDA not available. DeepSeek-OCR requires a GPU.")
logger.error("Please run in Colab with GPU runtime or on a GPU machine.")
sys.exit(1)
logger.info(f"βœ… CUDA available: {torch.cuda.get_device_name(0)}")
def make_message(image: Image.Image, prompt: str) -> List[Dict]:
"""Create vLLM chat message with base64 encoded image."""
# Convert to RGB
image = image.convert("RGB")
# Encode as base64 data URI
buf = io.BytesIO()
image.save(buf, format="PNG")
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
return [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": data_uri}},
{"type": "text", "text": prompt},
],
}
]
def main():
parser = argparse.ArgumentParser(
description="Test DeepSeek-OCR with vLLM",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Test with HF dataset
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --index 0
# Test with local image
uv run deepseek-ocr-vllm-test.py --image document.png
# Test different resolution
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --resolution-mode large
""",
)
# Image source (one required)
source_group = parser.add_mutually_exclusive_group(required=True)
source_group.add_argument("--image", help="Path to local image file")
source_group.add_argument(
"--dataset",
help="HF dataset ID (will use first image from train split)",
)
parser.add_argument(
"--index",
type=int,
default=0,
help="Dataset index to use (default: 0)",
)
parser.add_argument(
"--image-column",
default="image",
help="Column name for images in dataset (default: image)",
)
parser.add_argument(
"--split",
default="train",
help="Dataset split to use (default: train)",
)
parser.add_argument(
"--resolution-mode",
choices=list(RESOLUTION_MODES.keys()),
default="gundam",
help="Resolution mode preset (default: gundam)",
)
parser.add_argument(
"--prompt",
default="<image>\n<|grounding|>Convert the document to markdown.",
help="OCR prompt",
)
parser.add_argument(
"--model",
default="deepseek-ai/DeepSeek-OCR",
help="Model ID (default: deepseek-ai/DeepSeek-OCR)",
)
args = parser.parse_args()
# Check CUDA
check_cuda()
# Load image
logger.info("πŸ“· Loading image...")
if args.image:
image = Image.open(args.image)
logger.info(f"Loaded from file: {args.image}")
else:
dataset = load_dataset(args.dataset, split=args.split, streaming=False)
if args.image_column not in dataset.column_names:
logger.error(f"Column '{args.image_column}' not found in dataset")
logger.error(f"Available columns: {dataset.column_names}")
sys.exit(1)
image = dataset[args.index][args.image_column]
if isinstance(image, dict) and "bytes" in image:
image = Image.open(io.BytesIO(image["bytes"]))
logger.info(f"Loaded from dataset: {args.dataset}[{args.index}]")
logger.info(f"Image size: {image.size}")
# Get resolution settings
resolution = RESOLUTION_MODES[args.resolution_mode]
logger.info(f"Resolution mode: {args.resolution_mode}")
logger.info(f" base_size={resolution['base_size']}, image_size={resolution['image_size']}, crop_mode={resolution['crop_mode']}")
# Initialize vLLM
logger.info(f"πŸš€ Loading model: {args.model}")
logger.info("This may take a few minutes on first run...")
try:
llm = LLM(
model=args.model,
trust_remote_code=True,
max_model_len=8192,
gpu_memory_utilization=0.8,
limit_mm_per_prompt={"image": 1},
enforce_eager=False,
)
logger.info("βœ… Model loaded successfully!")
except Exception as e:
logger.error(f"❌ Failed to load model: {e}")
logger.error("\nThis might mean:")
logger.error(" 1. The model architecture is not recognized")
logger.error(" 2. Missing dependencies")
logger.error(" 3. Insufficient GPU memory")
sys.exit(1)
# Run inference
logger.info("πŸ” Running OCR...")
sampling_params = SamplingParams(
temperature=0.0,
max_tokens=8192,
)
message = make_message(image, args.prompt)
try:
outputs = llm.chat([message], sampling_params)
result = outputs[0].outputs[0].text.strip()
logger.info("βœ… OCR Complete!")
print("\n" + "=" * 80)
print("MARKDOWN OUTPUT:")
print("=" * 80)
print(result)
print("=" * 80)
except Exception as e:
logger.error(f"❌ Inference failed: {e}")
sys.exit(1)
if __name__ == "__main__":
main()