Karun Sharma commited on
Commit
87106f4
·
verified ·
1 Parent(s): a85cdee

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +177 -0
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Mathematics Dataset
2
+
3
+ This dataset code generates mathematical question and answer pairs, from a range
4
+ of question types at roughly school-level difficulty. This is designed to test
5
+ the mathematical learning and algebraic reasoning skills of learning models.
6
+
7
+ Original paper: [Analysing Mathematical
8
+ Reasoning Abilities of Neural Models](https://openreview.net/pdf?id=H1gR5iR5FX)
9
+ (Saxton, Grefenstette, Hill, Kohli).
10
+
11
+ ## Example questions
12
+
13
+ ```
14
+ Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.
15
+ Answer: 4
16
+
17
+ Question: Calculate -841880142.544 + 411127.
18
+ Answer: -841469015.544
19
+
20
+ Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).
21
+ Answer: 54*a - 30
22
+
23
+ Question: Let e(l) = l - 6. Is 2 a factor of both e(9) and 2?
24
+ Answer: False
25
+
26
+ Question: Let u(n) = -n**3 - n**2. Let e(c) = -2*c**3 + c. Let l(j) = -118*e(j) + 54*u(j). What is the derivative of l(a)?
27
+ Answer: 546*a**2 - 108*a - 118
28
+
29
+ Question: Three letters picked without replacement from qqqkkklkqkkk. Give prob of sequence qql.
30
+ Answer: 1/110
31
+ ```
32
+
33
+ ## Pre-generated data
34
+
35
+ [Pre-generated files](https://console.cloud.google.com/storage/browser/mathematics-dataset)
36
+
37
+ ### Version 1.0
38
+
39
+ This is the version released with the original paper. It contains 2 million
40
+ (question, answer) pairs per module, with questions limited to 160 characters in
41
+ length, and answers to 30 characters in length. Note the training data for each
42
+ question type is split into "train-easy", "train-medium", and "train-hard". This
43
+ allows training models via a curriculum. The data can also be mixed together
44
+ uniformly from these training datasets to obtain the results reported in the
45
+ paper. Categories:
46
+
47
+ * **algebra** (linear equations, polynomial roots, sequences)
48
+ * **arithmetic** (pairwise operations and mixed expressions, surds)
49
+ * **calculus** (differentiation)
50
+ * **comparison** (closest numbers, pairwise comparisons, sorting)
51
+ * **measurement** (conversion, working with time)
52
+ * **numbers** (base conversion, remainders, common divisors and multiples,
53
+ primality, place value, rounding numbers)
54
+ * **polynomials** (addition, simplification, composition, evaluating, expansion)
55
+ * **probability** (sampling without replacement)
56
+
57
+ ## Getting the source
58
+
59
+ ### PyPI
60
+
61
+ The easiest way to get the source is to use pip:
62
+
63
+ ```shell
64
+ $ pip install mathematics_dataset
65
+ ```
66
+
67
+ ### From GitHub
68
+
69
+ Alternately you can get the source by cloning the mathematics_dataset
70
+ repository:
71
+
72
+ ```shell
73
+ $ git clone https://github.com/deepmind/mathematics_dataset
74
+ $ pip install --upgrade mathematics_dataset/
75
+ ```
76
+
77
+ ## Generating examples
78
+
79
+ Generated examples can be printed to stdout via the `generate` script. For
80
+ example:
81
+
82
+ ```shell
83
+ python -m mathematics_dataset.generate --filter=linear_1d
84
+ ```
85
+
86
+ will generate example (question, answer) pairs for solving linear equations in
87
+ one variable.
88
+
89
+ We've also included `generate_to_file.py` as an example of how to write the
90
+ generated examples to text files. You can use this directly, or adapt it for
91
+ your generation and training needs.
92
+
93
+ ## Dataset Metadata
94
+ The following table is necessary for this dataset to be indexed by search
95
+ engines such as <a href="https://g.co/datasetsearch">Google Dataset Search</a>.
96
+ <div itemscope itemtype="http://schema.org/Dataset">
97
+ <table>
98
+ <tr>
99
+ <th>property</th>
100
+ <th>value</th>
101
+ </tr>
102
+ <tr>
103
+ <td>name</td>
104
+ <td><code itemprop="name">Mathematics Dataset</code></td>
105
+ </tr>
106
+ <tr>
107
+ <td>url</td>
108
+ <td><code itemprop="url">https://github.com/deepmind/mathematics_dataset</code></td>
109
+ </tr>
110
+ <tr>
111
+ <td>sameAs</td>
112
+ <td><code itemprop="sameAs">https://github.com/deepmind/mathematics_dataset</code></td>
113
+ </tr>
114
+ <tr>
115
+ <td>description</td>
116
+ <td><code itemprop="description">This dataset consists of mathematical question and answer pairs, from a range
117
+ of question types at roughly school-level difficulty. This is designed to test
118
+ the mathematical learning and algebraic reasoning skills of learning models.\n
119
+ \n
120
+ ## Example questions\n
121
+ \n
122
+ ```\n
123
+ Question: Solve -42*r + 27*c = -1167 and 130*r + 4*c = 372 for r.\n
124
+ Answer: 4\n
125
+ \n
126
+ Question: Calculate -841880142.544 + 411127.\n
127
+ Answer: -841469015.544\n
128
+ \n
129
+ Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1. Let f(i) = 3*i - 39. Let w(j) = q(x(j)). Calculate f(w(a)).\n
130
+ Answer: 54*a - 30\n
131
+ ```\n
132
+ \n
133
+ It contains 2 million
134
+ (question, answer) pairs per module, with questions limited to 160 characters in
135
+ length, and answers to 30 characters in length. Note the training data for each
136
+ question type is split into "train-easy", "train-medium", and "train-hard". This
137
+ allows training models via a curriculum. The data can also be mixed together
138
+ uniformly from these training datasets to obtain the results reported in the
139
+ paper. Categories:\n
140
+ \n
141
+ * **algebra** (linear equations, polynomial roots, sequences)\n
142
+ * **arithmetic** (pairwise operations and mixed expressions, surds)\n
143
+ * **calculus** (differentiation)\n
144
+ * **comparison** (closest numbers, pairwise comparisons, sorting)\n
145
+ * **measurement** (conversion, working with time)\n
146
+ * **numbers** (base conversion, remainders, common divisors and multiples,\n
147
+ primality, place value, rounding numbers)\n
148
+ * **polynomials** (addition, simplification, composition, evaluating, expansion)\n
149
+ * **probability** (sampling without replacement)</code></td>
150
+ </tr>
151
+ <tr>
152
+ <td>provider</td>
153
+ <td>
154
+ <div itemscope itemtype="http://schema.org/Organization" itemprop="provider">
155
+ <table>
156
+ <tr>
157
+ <th>property</th>
158
+ <th>value</th>
159
+ </tr>
160
+ <tr>
161
+ <td>name</td>
162
+ <td><code itemprop="name">DeepMind</code></td>
163
+ </tr>
164
+ <tr>
165
+ <td>sameAs</td>
166
+ <td><code itemprop="sameAs">https://en.wikipedia.org/wiki/DeepMind</code></td>
167
+ </tr>
168
+ </table>
169
+ </div>
170
+ </td>
171
+ </tr>
172
+ <tr>
173
+ <td>citation</td>
174
+ <td><code itemprop="citation">https://identifiers.org/arxiv:1904.01557</code></td>
175
+ </tr>
176
+ </table>
177
+ </div>