# Con el output del generation script de https://huggingface.co/datasets/luisgasco/profner_ner_master # Y añadiendo los archivos valid.tsv y train.tsv de la task 1 del dataset de Profner import pandas as pd from collections import defaultdict from datasets import Dataset, DatasetDict # 1. Cargar TSVs de etiquetas df_train_labels = pd.read_csv("/content/train.tsv", sep="\t") df_valid_labels = pd.read_csv("/content/valid.tsv", sep="\t") # Unificar etiquetas en un solo dict labels_dict = dict(zip(df_train_labels["tweet_id"], df_train_labels["label"])) labels_dict.update(dict(zip(df_valid_labels["tweet_id"], df_valid_labels["label"]))) # 2. Cargar IDs de cada split def load_ids(path): with open(path, encoding="utf-8") as f: return set(line.strip() for line in f if line.strip()) train_ids = load_ids("/content/train_ids.txt") dev_ids = load_ids("/content/dev_ids.txt") test_ids = load_ids("/content/test_ids.txt") labels_dict = {str(k): v for k, v in labels_dict.items()} train_ids = set(str(id_) for id_ in train_ids) dev_ids = set(str(id_) for id_ in dev_ids) test_ids = set(str(id_) for id_ in test_ids) # 3. Leer los archivos .spacy estilo CoNLL (train + valid juntos) def cargar_textos_conll(path): textos = defaultdict(list) with open(path, encoding="utf-8") as f: for line in f: if line.strip(): parts = line.strip().split() if len(parts) == 5: token, doc_id, *_ = parts textos[doc_id].append(token) return textos textos_train = cargar_textos_conll("/content/train_spacy.txt") textos_valid = cargar_textos_conll("/content/valid_spacy.txt") textos = {**textos_train, **textos_valid} # 4. Construir datasets por split def construir_split(ids): data = [] for doc_id in ids: if doc_id in textos and doc_id in labels_dict: text = " ".join(textos[doc_id]) label = int(labels_dict[doc_id]) data.append({"tweet_id": doc_id, "text": text, "label": label}) return Dataset.from_list(data) # 5. Crear DatasetDict dataset = DatasetDict({ "train": construir_split(train_ids), "validation": construir_split(dev_ids), "test": construir_split(test_ids), }) from datasets import ClassLabel, Features, Value # Definir las etiquetas de texto label_names = ["SIN_PROFESION", "CON_PROFESION"] # Crear esquema con ClassLabel features = Features({ "tweet_id": Value("string"), "text": Value("string"), "label": ClassLabel(names=label_names) }) # Aplicar el esquema a cada división for split in dataset: dataset[split] = dataset[split].cast(features)