Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,105 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- stockmarket
|
| 7 |
+
- trading
|
| 8 |
+
pretty_name: sunny thakur
|
| 9 |
+
size_categories:
|
| 10 |
+
- 10K<n<100K
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
π LLM Trading Instruction Dataset β V2 (2023β2025)
|
| 14 |
+
```
|
| 15 |
+
Dataset Version: 2
|
| 16 |
+
Filename: llm_trading_dataset_20250629_115817.jsonl
|
| 17 |
+
Entries: 20,306
|
| 18 |
+
Period Covered: 2023β2025
|
| 19 |
+
Format: JSON Lines (.jsonl)
|
| 20 |
+
Task: Instruction Tuning for Financial Signal Classification
|
| 21 |
+
Target Models: LLaMA, Mistral, GPT-J, Falcon, Zephyr, DeepSeek, Qwen
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
π§ Overview
|
| 25 |
+
|
| 26 |
+
This second version of the dataset expands the time horizon and depth of training data for instruction-tuned LLMs by covering real-world market indicators from 2023 through 2025. It enables financial models to learn patterns, sentiment, and timing in Buy/Sell signal generation.
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
π Dataset Format
|
| 31 |
+
|
| 32 |
+
Each entry follows the instruction tuning schema:
|
| 33 |
+
```
|
| 34 |
+
{
|
| 35 |
+
"instruction": "Given technical indicators, predict if it's a Buy or Sell signal.",
|
| 36 |
+
"input": "AAPL on 2025-03-20 with indicators: EMA20=224.55, EMA50=232.09, BB_upper=254.87, BB_lower=203.31, MACD=-6.81, MACD_signal=-4.88, RSI=33.61, CCI=-85.31, STOCH_K=15.95, STOCH_D=15.7",
|
| 37 |
+
"output": "Buy"
|
| 38 |
+
}
|
| 39 |
+
```
|
| 40 |
+
π Fields:
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
instruction β Prompt for LLM task (uniform for all entries)
|
| 44 |
+
|
| 45 |
+
input β Date, stock symbol, and associated technical indicators
|
| 46 |
+
|
| 47 |
+
output β Predicted trading signal: "Buy" or "Sell"
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
π Technical Indicators Used
|
| 53 |
+
```
|
| 54 |
+
Indicator Description
|
| 55 |
+
EMA20 / EMA50 Short and medium-term exponential MA
|
| 56 |
+
BB_upper/lower Bollinger Bands β price volatility zones
|
| 57 |
+
MACD, MACD_sig Momentum crossover indicators
|
| 58 |
+
RSI Overbought/Oversold indicator (0β100)
|
| 59 |
+
CCI Momentum-based deviation indicator
|
| 60 |
+
STOCH_K / D Stochastic oscillator %K/%D lines
|
| 61 |
+
```
|
| 62 |
+
π§ Example Usage
|
| 63 |
+
```
|
| 64 |
+
import json
|
| 65 |
+
|
| 66 |
+
with open("llm_trading_dataset_20250629_115817.jsonl") as f:
|
| 67 |
+
for line in f:
|
| 68 |
+
ex = json.loads(line)
|
| 69 |
+
print("Prompt:", ex["instruction"])
|
| 70 |
+
print("Indicators:", ex["input"])
|
| 71 |
+
print("Decision:", ex["output"])
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
π§ͺ Use Cases
|
| 76 |
+
|
| 77 |
+
Finetune instruction-tuned LLMs for trading automation
|
| 78 |
+
|
| 79 |
+
Evaluate transformer models for financial decision tasks
|
| 80 |
+
|
| 81 |
+
Build explainable AI advisors using LLM-based logic
|
| 82 |
+
|
| 83 |
+
Backtest models on realistic multi-year indicators
|
| 84 |
+
|
| 85 |
+
Create copilot assistants for traders & hedge funds
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
π Version Info
|
| 90 |
+
Version Range Covered Notes
|
| 91 |
+
v1 2025 only Initial dataset release
|
| 92 |
+
v2 2023β2025 Extended multi-year training set
|
| 93 |
+
|
| 94 |
+
π License
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
MIT License β Open for use, distribution, and modification.
|
| 98 |
+
|
| 99 |
+
Attribution recommended for research and commercial tools.
|
| 100 |
+
|
| 101 |
+
π€ Contact
|
| 102 |
+
|
| 103 |
+
π§ sunny48445@gmail.com
|
| 104 |
+
|
| 105 |
+
π§ AI/Trading Collab: DM for finetuning support or strategy model help
|