Commit
·
e917b46
1
Parent(s):
4530e42
upload hubscripts/tmvar_v3_hub.py to hub from bigbio repo
Browse files- tmvar_v3.py +307 -0
tmvar_v3.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""
|
| 16 |
+
This dataset contains 500 PubMed articles manually annotated with mutation
|
| 17 |
+
mentions of various kinds and dbsnp normalizations for each of them. In
|
| 18 |
+
addition, it contains variant normalization options such as allele-specific
|
| 19 |
+
identifiers from the ClinGen Allele Registry It can be used for NER tasks and
|
| 20 |
+
NED tasks, This dataset does NOT have splits.
|
| 21 |
+
"""
|
| 22 |
+
import itertools
|
| 23 |
+
|
| 24 |
+
import datasets
|
| 25 |
+
from bioc import pubtator
|
| 26 |
+
|
| 27 |
+
from .bigbiohub import kb_features
|
| 28 |
+
from .bigbiohub import BigBioConfig
|
| 29 |
+
from .bigbiohub import Tasks
|
| 30 |
+
|
| 31 |
+
_CITATION = """\
|
| 32 |
+
@misc{https://doi.org/10.48550/arxiv.2204.03637,
|
| 33 |
+
title = {tmVar 3.0: an improved variant concept recognition and normalization tool},
|
| 34 |
+
author = {
|
| 35 |
+
Wei, Chih-Hsuan and Allot, Alexis and Riehle, Kevin and Milosavljevic,
|
| 36 |
+
Aleksandar and Lu, Zhiyong
|
| 37 |
+
},
|
| 38 |
+
year = 2022,
|
| 39 |
+
publisher = {arXiv},
|
| 40 |
+
doi = {10.48550/ARXIV.2204.03637},
|
| 41 |
+
url = {https://arxiv.org/abs/2204.03637},
|
| 42 |
+
copyright = {Creative Commons Attribution 4.0 International},
|
| 43 |
+
keywords = {
|
| 44 |
+
Computation and Language (cs.CL), FOS: Computer and information sciences,
|
| 45 |
+
FOS: Computer and information sciences
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
"""
|
| 50 |
+
_LANGUAGES = ['English']
|
| 51 |
+
_PUBMED = True
|
| 52 |
+
_LOCAL = False
|
| 53 |
+
|
| 54 |
+
_DATASETNAME = "tmvar_v3"
|
| 55 |
+
_DISPLAYNAME = "tmVar v3"
|
| 56 |
+
|
| 57 |
+
_DESCRIPTION = """\
|
| 58 |
+
This dataset contains 500 PubMed articles manually annotated with mutation \
|
| 59 |
+
mentions of various kinds and dbsnp normalizations for each of them. In \
|
| 60 |
+
addition, it contains variant normalization options such as allele-specific \
|
| 61 |
+
identifiers from the ClinGen Allele Registry It can be used for NER tasks and \
|
| 62 |
+
NED tasks, This dataset does NOT have splits.
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/"
|
| 66 |
+
|
| 67 |
+
_LICENSE = 'License information unavailable'
|
| 68 |
+
|
| 69 |
+
_URLS = {_DATASETNAME: "ftp://ftp.ncbi.nlm.nih.gov/pub/lu/tmVar3/tmVar3Corpus.txt"}
|
| 70 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
| 71 |
+
_SOURCE_VERSION = "3.0.0"
|
| 72 |
+
_BIGBIO_VERSION = "1.0.0"
|
| 73 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class TmvarV3Dataset(datasets.GeneratorBasedBuilder):
|
| 77 |
+
"""
|
| 78 |
+
This dataset contains 500 PubMed articles manually annotated with mutation mentions of various kinds and various normalizations for each of them.
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
DEFAULT_CONFIG_NAME = "tmvar_v3_source"
|
| 82 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 83 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 84 |
+
BUILDER_CONFIGS = []
|
| 85 |
+
BUILDER_CONFIGS.append(
|
| 86 |
+
BigBioConfig(
|
| 87 |
+
name=f"{_DATASETNAME}_source",
|
| 88 |
+
version=SOURCE_VERSION,
|
| 89 |
+
description=f"{_DATASETNAME} source schema",
|
| 90 |
+
schema="source",
|
| 91 |
+
subset_id=f"{_DATASETNAME}",
|
| 92 |
+
)
|
| 93 |
+
)
|
| 94 |
+
BUILDER_CONFIGS.append(
|
| 95 |
+
BigBioConfig(
|
| 96 |
+
name=f"{_DATASETNAME}_bigbio_kb",
|
| 97 |
+
version=BIGBIO_VERSION,
|
| 98 |
+
description=f"{_DATASETNAME} BigBio schema",
|
| 99 |
+
schema="bigbio_kb",
|
| 100 |
+
subset_id=f"{_DATASETNAME}",
|
| 101 |
+
)
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 105 |
+
type_to_db_mapping = {
|
| 106 |
+
"CorrespondingGene": "NCBI Gene",
|
| 107 |
+
"tmVar": "tmVar",
|
| 108 |
+
"dbSNP": "dbSNP",
|
| 109 |
+
"VariantGroup": "VariantGroup",
|
| 110 |
+
"NCBI Taxonomy": "NCBI Taxonomy",
|
| 111 |
+
}
|
| 112 |
+
if self.config.schema == "source":
|
| 113 |
+
features = datasets.Features(
|
| 114 |
+
{
|
| 115 |
+
"pmid": datasets.Value("string"),
|
| 116 |
+
"passages": [
|
| 117 |
+
{
|
| 118 |
+
"type": datasets.Value("string"),
|
| 119 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 120 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 121 |
+
}
|
| 122 |
+
],
|
| 123 |
+
"entities": [
|
| 124 |
+
{
|
| 125 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 126 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 127 |
+
"semantic_type_id": datasets.Sequence(
|
| 128 |
+
datasets.Value("string")
|
| 129 |
+
),
|
| 130 |
+
"normalized": {
|
| 131 |
+
key: datasets.Sequence(datasets.Value("string"))
|
| 132 |
+
for key in type_to_db_mapping.keys()
|
| 133 |
+
},
|
| 134 |
+
}
|
| 135 |
+
],
|
| 136 |
+
}
|
| 137 |
+
)
|
| 138 |
+
elif self.config.schema == "bigbio_kb":
|
| 139 |
+
features = kb_features
|
| 140 |
+
return datasets.DatasetInfo(
|
| 141 |
+
description=_DESCRIPTION,
|
| 142 |
+
features=features,
|
| 143 |
+
homepage=_HOMEPAGE,
|
| 144 |
+
license=str(_LICENSE),
|
| 145 |
+
citation=_CITATION,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def _split_generators(self, dl_manager):
|
| 149 |
+
"""Returns SplitGenerators."""
|
| 150 |
+
url = _URLS[_DATASETNAME]
|
| 151 |
+
test_filepath = dl_manager.download(url)
|
| 152 |
+
return [
|
| 153 |
+
datasets.SplitGenerator(
|
| 154 |
+
name=datasets.Split.TEST,
|
| 155 |
+
gen_kwargs={
|
| 156 |
+
"filepath": test_filepath,
|
| 157 |
+
},
|
| 158 |
+
)
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
def get_normalizations(self, id, type, doc_id):
|
| 162 |
+
"""
|
| 163 |
+
Given a type and a number of normalizations ids, this function returns a dictionary of the normalized ids
|
| 164 |
+
"""
|
| 165 |
+
base_dict = {
|
| 166 |
+
key: []
|
| 167 |
+
for key in [
|
| 168 |
+
"tmVar",
|
| 169 |
+
"CorrespondingGene",
|
| 170 |
+
"dbSNP",
|
| 171 |
+
"VariantGroup",
|
| 172 |
+
"NCBI Taxonomy",
|
| 173 |
+
]
|
| 174 |
+
}
|
| 175 |
+
ids = id.split(";")
|
| 176 |
+
if type in ["CellLine", "Species"]:
|
| 177 |
+
id_vals = ids[0].split(",")
|
| 178 |
+
base_dict["NCBI Taxonomy"] = id_vals
|
| 179 |
+
elif type == "Gene":
|
| 180 |
+
id_vals = ids[0].split(",")
|
| 181 |
+
base_dict["CorrespondingGene"] = id_vals
|
| 182 |
+
else:
|
| 183 |
+
for id in ids:
|
| 184 |
+
if "|" in id:
|
| 185 |
+
base_dict["tmVar"].append(id)
|
| 186 |
+
elif id[:2] == "rs":
|
| 187 |
+
base_dict["dbSNP"].append(id[2:])
|
| 188 |
+
elif ":" in id:
|
| 189 |
+
db_name, db_id = id.split(":")
|
| 190 |
+
if db_name == "RS#":
|
| 191 |
+
db_name = "dbSNP"
|
| 192 |
+
# Hacky fix below for doc ID: 18272172
|
| 193 |
+
elif db_name == "Va1iantGroup":
|
| 194 |
+
db_name = "VariantGroup"
|
| 195 |
+
elif db_name == "Gene":
|
| 196 |
+
db_name = "CorrespondingGene"
|
| 197 |
+
elif db_name == "Disease":
|
| 198 |
+
continue
|
| 199 |
+
db_ids = db_id.split(",")
|
| 200 |
+
base_dict[db_name].extend(db_ids)
|
| 201 |
+
else:
|
| 202 |
+
logger.info(
|
| 203 |
+
f"Malformed normalization in Document {doc_id}. Type: {type}, Number: {id}"
|
| 204 |
+
)
|
| 205 |
+
continue
|
| 206 |
+
return base_dict
|
| 207 |
+
|
| 208 |
+
def pubtator_to_source(self, filepath):
|
| 209 |
+
"""
|
| 210 |
+
Converts pubtator to source schema
|
| 211 |
+
"""
|
| 212 |
+
with open(filepath, "r", encoding="utf8") as fstream:
|
| 213 |
+
for doc in pubtator.iterparse(fstream):
|
| 214 |
+
document = {}
|
| 215 |
+
document["pmid"] = doc.pmid
|
| 216 |
+
title = doc.title
|
| 217 |
+
abstract = doc.abstract
|
| 218 |
+
document["passages"] = [
|
| 219 |
+
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
|
| 220 |
+
{
|
| 221 |
+
"type": "abstract",
|
| 222 |
+
"text": [abstract],
|
| 223 |
+
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
|
| 224 |
+
},
|
| 225 |
+
]
|
| 226 |
+
document["entities"] = [
|
| 227 |
+
{
|
| 228 |
+
"offsets": [[mention.start, mention.end]],
|
| 229 |
+
"text": [mention.text],
|
| 230 |
+
"semantic_type_id": [mention.type],
|
| 231 |
+
"normalized": self.get_normalizations(
|
| 232 |
+
mention.id,
|
| 233 |
+
mention.type,
|
| 234 |
+
doc.pmid,
|
| 235 |
+
),
|
| 236 |
+
}
|
| 237 |
+
for mention in doc.annotations
|
| 238 |
+
]
|
| 239 |
+
yield document
|
| 240 |
+
|
| 241 |
+
def pubtator_to_bigbio_kb(self, filepath):
|
| 242 |
+
"""
|
| 243 |
+
Converts pubtator to bigbio_kb schema
|
| 244 |
+
"""
|
| 245 |
+
with open(filepath, "r", encoding="utf8") as fstream:
|
| 246 |
+
uid = itertools.count(0)
|
| 247 |
+
for doc in pubtator.iterparse(fstream):
|
| 248 |
+
document = {}
|
| 249 |
+
title = doc.title
|
| 250 |
+
abstract = doc.abstract
|
| 251 |
+
document["id"] = next(uid)
|
| 252 |
+
document["document_id"] = doc.pmid
|
| 253 |
+
document["passages"] = [
|
| 254 |
+
{
|
| 255 |
+
"id": next(uid),
|
| 256 |
+
"type": "title",
|
| 257 |
+
"text": [title],
|
| 258 |
+
"offsets": [[0, len(title)]],
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"id": next(uid),
|
| 262 |
+
"type": "abstract",
|
| 263 |
+
"text": [abstract],
|
| 264 |
+
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
|
| 265 |
+
},
|
| 266 |
+
]
|
| 267 |
+
document["entities"] = [
|
| 268 |
+
{
|
| 269 |
+
"id": next(uid),
|
| 270 |
+
"offsets": [[mention.start, mention.end]],
|
| 271 |
+
"text": [mention.text],
|
| 272 |
+
"type": [mention.type],
|
| 273 |
+
"normalized": self.get_normalizations(
|
| 274 |
+
mention.id, mention.type, doc.pmid
|
| 275 |
+
),
|
| 276 |
+
}
|
| 277 |
+
for mention in doc.annotations
|
| 278 |
+
]
|
| 279 |
+
db_id_mapping = {
|
| 280 |
+
"dbSNP": "dbSNP",
|
| 281 |
+
"CorrespondingGene": "NCBI Gene",
|
| 282 |
+
"tmVar": "dbSNP",
|
| 283 |
+
}
|
| 284 |
+
for entity in document["entities"]:
|
| 285 |
+
normalized_bigbio_kb = []
|
| 286 |
+
for key, id_list in entity["normalized"].items():
|
| 287 |
+
if key in db_id_mapping.keys():
|
| 288 |
+
normalized_bigbio_kb.extend(
|
| 289 |
+
[
|
| 290 |
+
{"db_name": db_id_mapping[key], "db_id": id}
|
| 291 |
+
for id in id_list
|
| 292 |
+
]
|
| 293 |
+
)
|
| 294 |
+
entity["normalized"] = normalized_bigbio_kb
|
| 295 |
+
document["relations"] = []
|
| 296 |
+
document["events"] = []
|
| 297 |
+
document["coreferences"] = []
|
| 298 |
+
yield document
|
| 299 |
+
|
| 300 |
+
def _generate_examples(self, filepath):
|
| 301 |
+
"""Yields examples as (key, example) tuples."""
|
| 302 |
+
if self.config.schema == "source":
|
| 303 |
+
for source_example in self.pubtator_to_source(filepath):
|
| 304 |
+
yield source_example["pmid"], source_example
|
| 305 |
+
elif self.config.schema == "bigbio_kb":
|
| 306 |
+
for bigbio_example in self.pubtator_to_bigbio_kb(filepath):
|
| 307 |
+
yield bigbio_example["document_id"], bigbio_example
|